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Abstract

Large language models (LLMs) already excel at writing code
in high-resource languages such as Python and JavaScript, yet
stumble on low-resource languages that remain essential to
science and engineering. Besides the obvious shortage of pre-
training data, post-training itself is a bottleneck: every new
language seems to require new datasets, test harnesses, and
reinforcement-learning (RL) infrastructure.
We introduce Agnostics, a language-agnostic post-training
pipeline that eliminates this per-language engineering. The
key idea is to judge code solely by its externally observable
behavior, so a single verifier can test solutions written in any
language. Concretely, we (i) use an LLM to rewrite existing
unit-test datasets into an I/O format, (ii) supply a short config-
uration that tells the verifier how to compile and run a target
language, and (iii) apply reinforcement learning with verifi-
able rewards (RLVR) in a robust code execution environment.
Applied to five low-resource languages—Lua, Julia, R,
OCaml, and Fortran—Agnostics (1) improves Qwen-3 4B to
performance that rivals other 16B–70B open-weight models;
(2) scales cleanly to larger and diverse model families (Qwen-
3 8B, DeepSeek Coder 6.7B Instruct, Phi 4 Mini); and (3) for
≤16B parameter models, sets new state-of-the-art pass@1 re-
sults on MultiPL-E and a new multi-language version Live-
CodeBench that we introduce.
We will release the language-agnostic training datasets (Ag-
MBPP-X, Ag-Codeforces-X, Ag-LiveCodeBench-X), train-
ing code, and ready-to-use configurations, making RL post-
training in any programming language as simple as editing a
short YAML file.

1 Introduction
Large language models (LLMs) are remarkably good at pro-
gramming tasks, especially when coding in high-resource
programming languages such as Python and JavaScript.
Their proficiency in low-resource programming languages,
such as Fortran, Julia, and others, is significantly more
limited. This gap appears both on benchmarks (Cassano
et al. 2023) and in popular discourse. However, many low-
resource languages are widely used in computational sci-
ence (e.g., Fortran), medicine (e.g., Mumps), engineering
(e.g., Matlab), and others sectors. For programmers in these
sectors to be able to take full advantage of LLMs, we need
methods to make LLMs better at the languages that they use.

The capability gap between high-resource and low-
resource languages occurs for two reasons. The first one
is that there is vastly more training data for some pro-
gramming languages. For example, The Stack V2 (Lozhkov
et al. 2024a), the largest public training corpus of code, has
≈200GB of Python but only ≈2GB of Julia and Fortran.
Thus pretraining on code makes models significantly better
at Python. A more subtle reason is the availability of post-
training datasets and techniques. Contemporary LLMs are
developed with an extensive post-training process that relies
on (a) high-quality curated data for supervised fine-tuning,
and (b) carefully designed environments for reinforcement
learning, which must be able to execute and verify model-
generated solutions. Both of these require significant human
expertise, which is hard to find for low-resource languages.

OUr goal in this paper is to facilitate post-training LLMs
on low-resource programming languages, working towards
closing the resource gap. Our key idea is that for a signifi-
cant class of programming tasks, correctness can be speci-
fied as a property not of individual functions or code snip-
pets, but of the entire program’s observable behavior (e.g.,
I/O). Furthermore, if its correctness can be tested with an-
other program, we can use such a verifier together with ap-
propriate problems and test cases to make a universal rein-
forcement learning environment which can be instantiated
for any programming language. In fact, the language used
to implement the verifier and the one being learned are en-
tirely independent. This approach matches how some exist-
ing post-training datasets are formulated (even though they
are intended for Python/C++). We can also use LLMs to re-
formulate language-specific datasets into this format.

Based on this insight, our approach, Agnostics, works
as follows (Figure 1). 1) We use an LLM to reformu-
late language-specific datasets into our standard language-
agnostic format. 2) We generate prompts and instantiate the
verifier to target a particular language, with a small (4-5 line)
configuration. 3) We apply reinforcement learning with ver-
ified rewards (RLVR) using a robust, language-agnostic ex-
ecution sandbox that we develop. 4) The result is a model
specialized to the target language. Agnostics particularly ex-
cels at finetuning models for low-resource languages, as it
does not rely on high-quality datasets specific to a particular
language.



Figure 1: Overview: Agnostics Data Preparation and Training. (1) We reformulate existing coding datasets to our format.
(2) We adapt the language-agnostic datasets to a particular programming language. (3, 4) We reinforce coding via Group Rela-
tive Policy Optimization (Shao et al. 2024; DeepSeek-AI et al. 2025), verifying the programs in our code execution sandbox.

Language % Language %
JavaScript 17.04% Lua 0.53%
Java 8.38% R 0.35%
C++ 5.41% Fortran 0.07%
Python 3.56% Julia 0.10%

Figure 2: High-resource languages (left) dominate the Stack
v2. We are interested in low-resource languages (right).

Contributions We make the following contributions.
1. Agnostics, a post-training pipeline for coding in arbitrary

programming languages, including low-resource ones;

2. The best-performing open-weights models for Lua, R,
Julia, OCaml and Fortran at the ≤16B parameter scale;

3. 3 Agnostics datasets Ag-MBPP-X, Ag-Codeforces-X,
and Ag-LiveCodeBench-X, based on MBPP (Austin
et al. 2021), Open-R1 Codeforces (Penedo et al. 2025)
and LiveCodeBench (Jain et al. 2024a) respectively.

4. A small and highly-optimized Agnostics training frame-
work, implementing GRPO and including a parallel code
execution sandbox, sampling, rewards computation, and
model back-propagation.
Artifacts and code necessary to verify the results we

present are listed at agnostics.abgru.me. The training frame-
work will be publicly released together with the formal pub-
lication of this work.

2 Background and Related Work
Data Scarcity for Low-Resource Languages LLM have
been pretraining on code for several years, both because
LLMs are widely used for practical programming tasks, and
because pretraining on code improves their general reason-
ing abilities (Ma et al. 2023). In addition to general-purpose
LLMs, there are also code-specialized models that are either
trained exclusively on code (e.g., Xu et al. (2022); Allal et al.
(2023)) or trained on code starting from a general-purpose
model checkpoint (e.g., Rozière et al. (2024)).

However, the publicly available pretraining data for code
is heavily skewed toward a handful of programming lan-
guages. For example, consider The Stack V2 (Lozhkov et al.
2024b), which is the largest public code pretraining dataset,
with code from GitHub and dozens of other sources. The
Stack V2 dominated by a handful of programming lan-
guages: just 10 of 619 languages account for over 90% of
the dataset. We are interested in developing models for low-
resource languages that each account for less than 0.5% of
the publicly available code (Figure 2).

We can imagine working around this data scarcity in a few
ways. However, previous work shows that up-sampling low-
resource languages during pretraining only leads to small
benchmark improvements (Orlanski et al. 2023), while fine-
tuning on the pre-training data for low-resource languages
has negligible impact (Cassano et al. 2024). Thus, it is not
clear how to make further gains from existing natural data.

Synthetic Data for Low-Resource Languages If natural
data is not available for a task, it is possible to use LLMs
to generate synthetic fine-tuning data (Wang et al. 2023),
and there are many techniques for building code-centric su-
pervised fine-tuning datasets (e.g. Luo et al. (2023); Wei
et al. (2024c,b)) that work remarkably for Python. Although
these approaches could in principle be applied to any pro-
gramming language, Cassano et al. (2024) show that with-
out distillation or verification (e.g., see Hu et al. (2025); Wei
et al. (2024a)), synthetic tasks and code for low-resource
programming languages are low-quality, and models fine-
tuned on them perform poorly.

MultiPL-T (Cassano et al. 2024), similar to TransCoder-
ST (Roziere et al. 2021) and CMTrans (Xie et al. 2024),
couples synthetic data generation with verification using re-
jection sampling: it generates up n candidate programs in a
target, low-resource language and only fine-tune models on
generations that pass hidden unit tests that it translates from
Python. However, the MultiPL-T approach has two signif-
icant limitations. (1) For the verifier to not reject all sam-
ples, the model must be able to generate a working program
within n attempts. In MultiPL-T, ≈30% of prompts produce
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a working program for n ∈ {50, 100} attempts, and the
rest are discarded. We train on much harder problems, and
estimate that rejection sampling would require an order of
magnitude more resources to achieve a comparable accep-
tance rate (§A). (2) For each low-resource language of in-
terest, MultiPL-T requires the user to write a little compiler
to translate test cases and function signatures from Python
to the target language. MultiPL-T only supports a limited
set of built-in Python types (e.g., no classes) and it dictates
that all Python types and values must faithfully map to the
target language. However, depending on the problem and
language, the natural way to represent data may not map
cleanly to Python types. This can lead to peculiar, unid-
iomatic translations that require deep language expertise to
get right. The Agnostics approach is significantly easier to
use than MultiPL-T, and only requires the user to know how
to compile and run a program in the target language from
the shell.

Reinforcement Learning on Coding Tasks DeepSeek
R1 (DeepSeek-AI et al. 2025) popularized RL on LLMs
with rule-based rewards, instead of learned reward models.
R1 reports applying RL to coding tasks but does not disclose
further dataset details. A number of papers apply RL to the
NL to code task (Zeng et al. 2025; Gehring et al. 2024; Jain
et al. 2025). These techniques, which target Python, show
that reinforcement learning can improve LLM capabilities
beyond what is possible with just supervised fine-tuning.

However, the key benefit of reinforcement learning is that
it can train a model to do tasks for which high-quality data
for supervised fine-tuning is unavailable. There are recent
examples of using RL for code optimization (Du et al. 2025;
Nichols et al. 2024), resolve GitHub, issue resolution (Wei
et al. 2025), and iterative development (Zhou et al. 2025).
These papers target tasks in high-resource languages—C++,
Java, and Python—whereas Agnostics targets several low-
resource languages.

3 The Agnostics Approach
Our approach comprises (1) a data preparation stage which
reformulates language-specific programming tasks to be
language-agnostic, and retargets language-agnostic datasets
to a programming language of interest (1, 2 in Figure 1); and
(2) the training stage which uses the GRPO algorithm with
an efficient, language-agnostic verification framework (3, 4
in Figure 1). Our central idea is to have tasks ask for pro-
grams which behave in a particular way. The test cases are
samples of this behavior, and a verifier program can check
if a solution behaves according to the sample. In this paper,
we limited ourselves to working with tasks asking for pro-
grams which read data from the standard input, compute a
unique answer, and write it to the standard output. Hence,
the datasets we prepared share the same verifier.

3.1 Dataset Preparation
Some datasets, like Open-R1 Codeforces (Penedo et al.
2025), already define tasks in the desired I/O style. More
commonly, however, code datasets provide a set of unit tests.
Figure 3a shows a representative item from MBPP: it has a

# Write a python function to identify non-
# prime numbers.
def is_not_prime(n):

...

assert is not prime(2) == False

assert is not prime(10) == True

(a) A task prompt and associated tests (in gray) from MBPP.

Instruction: Given an integer N (N ≥ 2), determine
whether it is a non-prime number. Output ‘True’ if the num-
ber is non-prime, ‘False’ otherwise. Input format: a single
integer N (N ≥ 2). Output format: a single line containing
‘True’ or ‘False’.

Input Output
2 False
10 True

(b) The task and tests reformulated for Agnostics.

Figure 3: For dataset preparation, we use an LLM to refor-
mulate fine-tuning datasets with language-specific prompts
and tests (above) into equivalent language-agnostic pro-
gramming tasks.

natural language problem description and a Python function
signature that comprise the prompt, and a suite of tests used
to test model-generated code. These datasets can be easily
translated into the I/O format.

To make such problems language-agnostic and compat-
ible with our verifier, we prompt an LLM to reformulate
each task so that the program communicates exclusively via
plain-text standard in and standard out. We ask the model
to spell out concrete I/O conventions—number of decimal
places, newline versus comma separators, ordering of val-
ues, and so on—so that the expected behavior is unam-
biguous. Figure 3b shows the reformulated example. §B has
the instruction we use to reformulate MBPP; other datasets
might require small changes to the prompt.

3.2 Programming Language Preparation
To prepare a new language, we author a small configura-

tion file that serves two purposes. First, it defines a prompt
prefix (prepended to each problem by the trainer) which in-
structs the model to produce code in the target language.
Second, the configuration file specifies the shell commands
to install the language toolchain and run code. Figure 4
shows the configuration for the R language, with an atypi-
cally large prompt due to quirks of its I/O APIs.1

A good prefix should help avoid the most common er-
rors, but determining which errors are common can be time-
consuming. In our experience, if the model starts from ≥5%
accuracy, then the prefix only needs to say that the solution
must be in language L. (This varies with GRPO group size,

1There are three ways to run R, three I/O APIs, and only one
portable way to read from standard in.



install: apt-get install -y r-cran-tidyverse
filename: snippet.R
execute: Rscript snippet.R
prompt: |

Use R version 4.
Use ‘readLines(con = file("stdin"))‘ to
read input from stdin. Optionally, use
the ‘n‘ argument to read the first ‘n‘
lines. For example:
‘‘‘r
input <- readLines(con = file("stdin"), n
= 1)

n <- as.integer(input)
print(n) # print the first line of input
‘‘‘
Also, use ‘cat‘ to print output to stdout.
For example:
‘‘‘r
cat(n)
‘‘‘
Please do not use ‘print‘ to print output.

Figure 4: An Agnostics configuration snippet for R.

see §3.3.) On the other hand, when starting from near-zero
accuracy, a prefix like in Figure 4 can help prevent common
mistakes. For OCaml and Fortran, we asked a capable LLM
(OpenAI o3) for advice based on several faulty generations.

What follows are several Fortran programs. You’ll see
that most of them are wrong. Read them carefully and
identify the Fortran programming mistakes that I’m
making. Ignore algorithmic mistakes, and focus on my
misconceptions about Fortran. Come up with advice
on how I should program Fortran correctly. Distill
this advice into 10-20 sentences.

We used the resulting instructions verbatim (§C), but only
for training and not to evaluate models on OCaml or Fortran.

3.3 Trainer and Code Execution
The Agnostics trainer uses the Group-Relative Policy Opti-
mization (GRPO) reinforcement learning algorithm (Shao
et al. 2024), with verifiable rewards (DeepSeek-AI et al.
2025), and some common tweaks to further improve its
efficiency (Yu et al. 2025). We couple the algorithm with
a language-agnostic code execution framework that is de-
signed to be robust and efficient.

Trainer The trainer instantiates the GRPO algorithm as
follows. Let (x, {(ink, outk)}Kk=1) ∼ D be a dataset of
language-agnostics tasks, where x is the task prompt and
{(ink, outk)}Kk=1 is the set of I/O examples. Let L be a lan-
guage configuration L (e.g., Figure 4). From the behavior
policy πθold , we sample a group G of candidate responses

{yi}Gi=1 ∼ πθold(yi | L.prompt, x).

We assign each candidate a reward Ri, with Ri = 1 if the
execution environment (described later) verifies that the ex-
tracted program’s behavior is consistent with the I/O exam-
ples (ink, outk), and Ri = 0 otherwise.

We turn group rewards into sequence-level advantages

Âi =
Ri −mean({Rj}Gj=1)

std({Rj}Gj=1)
.

We then update the policy with the objective

LGRPO(θ) =
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min
(
ri,t(θ)Âi, ci,t(θ)Âi

)
,

where

ci,t(θ) = clip
(
ri,t(θ), 1− ε, 1 + ε

)
,

ri,t(θ) =
πθ(yi,t | L.prompt, x, yi,<t)

πθold(yi,t | L.prompt, x, yi,<t)
.

We omit the KL-divergence term, similar to Yu et al. (2025).
We considered and decided against a reward for a

partially-correct answer. We tried to reward the model for
code which runs without errors but produces wrong output
or for code which only passes the public tests. In both cases
the models were very likely to learn how to exploit the re-
ward, e.g., by producing empty programs or by hard-coding
the public tests (and claiming to produce a “draft answer”).

Code Execution Our verifier is a language-agnostic code
execution sandbox which (1) extracts a program from each
candidate; (2) compiles it if needed; and (3) tests it on the
I/O examples {(ink, outk)}Kk=1.

To extract the code, we instruct the model to put it in a
Markdown block, which all major instruction-tuned mod-
els do by default. Since we rely on the native format of the
model, we do not need to train the model with a format
reward. This guarantees that the increases in rewards that
we see during training are genuine improvements and not
merely the result of the model learning to format correctly.

For each language, we build and cache an OCI container
using the configuration L. To build the container, we install
the language compiler and runtime (the script L.install),
and include a generic execution harness which runs and tests
candidate programs. The execution harness runs continu-
ously in the container, waiting to receive a triple with the
candidate program, the set of input/output examples, and
timeouts. The harness (1) writes the program to disk (to
L.filename), (2) compiles it if needed (L.compile), (3)
runs it on each received input (L.execute), and verified
that it produces the expected output. The harness imposes
timeouts on the compilation step and each execution, and
returns reward 0 on any timeout or failed verification.

It is important to have timeouts for both compilation and
execution. This prevents pathologies such as unbounded
macro expansion in Julia (caught by the compile timeout)
and infinite loops (caught by the execution timeout). Using
containers also allows us to limit CPU, memory, and filesys-
tem usage; no elevated privileges are granted to the gen-
erated program. Although the current datasets only specify
tasks by standard I/O, the same sandbox can safely accom-
modate problems that read/write from network or disk.

A subtle resource limit that we impose is a limit on the
size of output. Even with a short timeout such as 30 sec-
onds, a pathological candidate program can output tens of



gigabytes of text. This can crash the verifier if it naı̈vely
tries to read and store all output. Instead, the verifier main-
tains a fixed-size (5MB) read buffer and immediately kills
programs which overflow it.

Overall, this design lets us keep a pool of warm containers
for the duration of training: we find that spawning a fresh
container is two orders of magnitude slower than re-using
an existing one. In our experiments, a single training run
may involve testing 150,000 programs, each on several I/O
examples. Most of the generated programs are faulty and
some behave badly, e.g., they either timeout, consume too
much memory, or produce too much output. So containers
do occasionally crash or need to be killed, and our execution
environment handles this automatically.

Finally, to improve compile times, our execution environ-
ment mounts a RAM disk in each container. Compilation
may be slow due to creating many intermediate files, and
indeed some large C++ projects, e.g., Firefox, recommend
using a RAM disk to speed up their builds (Firefox 2025).

Implementation We implement the trainer and execution
environment with Ray (Moritz et al. 2018), which facilitates
multiprocessing and distributed computing. In particular, the
framework allows distributing the training over a network of
heterogeneous nodes, which allows running the trainer on
a node specialized for GPU work and the execution envi-
ronment on a node specialized for CPU work. Ray also lets
us easily have two separate inter-communicating processes,
one for group generation and another for verification and
loss computation, simply by defining two actor classes. Run-
ning the two concurrently significantly speeds up training,
as we found that they take a roughly comparable amount of
time. The execution environment is also implemented as an
actor, with one Python asyncio task per container. Using
tasks instead of actors helps lower how much inter-process
communication and data copying is needed.

Hyperparameters For our training, we use the AdamW
optimizer (Loshchilov and Hutter 2019) with a learning rate
of 5 × 10−6 and a cosine decay schedule with a warmup
of 0.1 epochs. We process 4 prompts in each batch, with
group size 32 per prompt. We generate with temperature 0.7.
We train hybrid reasoning models with reasoning disabled.
(We still often observe generations with reasoning-like text,
either before the answer or in comments.)

4 Evaluation
To evaluate our approach and codebase, we train and bench-
mark multiple models on 5 low-resource programming lan-
guages. We measure pass@1 accuracy with reasoning dis-
abled and 20 samples per prompt at temperature 0.2.

4.1 Training datasets
Ag-Codeforces-X, the main dataset we use for training,
was created based on competitive programming problems
from the Open-R1 Codeforces dataset (Penedo et al. 2025).
Few adjustments were necessary, since the problems already
specified programs and tests using standard I/O. The train
split contains 5369 problems. See §B for more details.

Table 1: Pass@1 rates on AG-LiveCodeBench-X for Qwen
3 4B models trained on five low-resource languages using
Ag-Codeforces-X. Each model achieves a SOTA result for
an open-weight model with ≤16B parameters.

Model Ag-LiveCodeBench-X
X= Lua Julia R OCaml Fortran

Llama-3.3-70B-Ins 25 22 13 7 3
Qwen3-32B 22 26 17 2 1
DSCv2-Lite-Ins-16B 13 12 9 7 6

Qwen3-4B 11 10 10 1 0
Qwen3-4B-CF-X (Ours) 23 22 15 7 15

4.2 Benchmarks
We evaluate Agnostics with the following benchmarks.

MultiPL-E (Cassano et al. 2023) is a well-established
benchmark which has been frequently used to evaluate the
performance of new LLMs on a broad set of languages
(e.g., Kimi Team (2025); Yang et al. (2025); Grattafiori
et al. (2024); ByteDance et al. (2025)). MultiPL-E was pre-
pared by compiling HumanEval (Chen et al. 2021) prompts
and unit tests from Python to each target language. Each
MultiPL-E programming language requires a ≈ 500 LOC
prompt and test translator, considerably more effort than
writing an Agnostics configuration file.

A major limitation of MultiPL-E is being too easy for
frontier models. With Python, frontier models are now eval-
uated on solving programming contest problems (Jain et al.
2024a); no multi-language benchmarks are as challenging.

Ag-LiveCodeBench-X, a contribution of this paper,
is a new multi-language benchmark derived from Live-
CodeBench. LiveCodeBench 5.0 has 880 problems, of
which 381 have Python starter code and test cases. The re-
maining 499 problems do not use starter code and instead
use standard I/O to specify and test solutions. Hence we
used these problems to transform LiveCodeBench into an
Agnostics dataset. Accordingly, benchmarking a new pro-
gramming language with Ag-LiveCodeBench-X is straight-
forward: we can reuse the language configurations and exe-
cution environment from our trainer (§3.3).

Importantly, the problems from LiveCodeBench and thus
also Ag-LiveCodeBench-X are filtered out from our training
sets. Moreover, our results show that Ag-LiveCodeBench-X
is significantly harder than MultiPL-E.

4.3 Results
We now present our results. We use a few abbreviations in
the tables. Ag-LCB-X stands for Ag-LiveCodeBench-X; we
clarify abbreviated model names in the text. One table row
may present scores of many models; the column for lan-
guage X shows the score of the model trained on X.

SOTA small LLMs for low-resource PLs Using Agnos-
tics, we train Qwen 3 4B on Ag-Codeforces-X specialized to
Fortran, Julia, Lua, OCaml, and R. The resulting Qwen3-4B-
CF-X models are, to the best of our knowledge, state-of-the



Table 2: Pass@1 rates on MultiPL-E for Qwen 3 4B models
trained using Ag-Codeforces-X. The significant improve-
ment indicates that they did not overfit to the competitive
programming format.

Model MultiPL-E
X= Lua Julia R

Qwen3-4B 61 51 36
Qwen3-4B-CF-X (Ours) 64 54 43
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Figure 5: Training Qwen3-4B-CF-X, GRPO batch pass@1.

art low-resource programming language code models with
open-weights and ≤16B parameters.

Benchmarking them on Ag-LiveCodeBench-X (Table 1),
we see significant improvements. (i) On every language, the
models match or outperform DeepSeek Coder v2 Lite In-
struct (16B). (ii) On every language, our performance comes
close to or even exceeds that of Qwen 3 32B and Llama 3.2
70B. (iii) Compared to the base model, Qwen 3 4B, pass@1
improves by a factor of 1.5–2x. It is safe to assume that
the Qwen models, like the Llama models (Grattafiori et al.
2024), are trained on all the publicly available coding data;
hence, Agnostics improves the models beyond what typical
training on such data allows.

(iv) Finally, on OCaml and Fortran, we improve the per-
formance of Qwen 3 4B from near zero to 7% and 15%.
Notably, although we train the models with a prompt prefix
to facilitate learning (§3.1), we do not use this prompt prefix
for evaluation. Thus the pass@1 scores represent what the
model learned, and not information provided in context.

A potential weakness of our approach is that our models
are overspecialized to the competitive programming format,
and can only generate programs that use standard I/O. We
also evaluate with the established MultiPL-E benchmark,
which does not use this format, and also find significant im-
provements (Table 2).2 This indicates that our models have
not overfit to the competition programming format.

Figure 5 shows the GRPO batch pass@1 rates seen when
training Qwen3-4B-CF-X. All the models follow similar

2Note that MultiPL-E does not support OCaml and Fortran.

Table 3: Pass@1 rates for larger Qwen 3 8B models
trained on three languages using Ag-Codeforces-X. Agnos-
tics scales to models of this size.

Model MultiPL-E Ag-LCB-X
X= Lua Julia R X= Lua Julia R

Qwen3-8B 63 53 44 11 9 9
Qwen3-8B-CF-X (Ours) 68 61 52 25 25 19

Table 4: Pass@1 rates on for Qwen 3 4B models trained us-
ing MBPP. This smaller and easier dataset still results in im-
provements, though smaller than those in Tables 1 and 2.

Model MultiPL-E Ag-LCB-X
X= Lua Julia R X= Lua Julia R

Qwen3-4B 51 61 36 11 10 10
Qwen3-4B-MBPP-X (Ours) 51 62 41 15 15 9

curves, partially due to being trained on the same data per-
mutation. Nearly all the models slowly keep improving al-
most until the dataset end. We also observed the train and
test split rewards to be correlated with each other (§D.2).

Agnostics scales to larger models To test if improve-
ments from Agnostics training scale with model size, we
train the Qwen 3 8B model on Ag-Codeforces-X spe-
cialized to Lua, Julia and R and benchmarked it on Ag-
LiveCodeBench-X and MultiPL-E (Table 3). The Qwen3-
8B-CF-X models improve significantly on both benchmarks,
improving over their 4B counterparts.

We expect Agnostics to scale to even larger models, with
appropriate computing resources. However, we found that
Agnostics training with Ag-Codeforces-X does not improve
two smaller models: Qwen 3 1.7B and Llama 3.2 3B In-
struct, perhaps due to the problems being too difficult.

Agnostics works with easier problems So far, all of the
models that we have trained so far have used the Open-
R1 Codeforces dataset. To show that Agnostics works with
other datasets, we also train models for Julia, Lua, and R
using the MBPP training set. (§3.1 describes how we pre-
pare MBPP.) Note that the MBPP problems are trivial—see
Figure 3a—compared to the Open-R1 Codeforces problems.
So, we cannot expect these models trained on the MBPP
problems to be as good as the models we presented before.

Nevertheless, training on MBPP still improves perfor-
mance on Lua and Julia (Table 4). On R, the table shows
a small drop in performance on Ag-LiveCodeBench-X, but
an improvement on MultiPL-E.

Agnostics works on other model families Finally, to test
if Agnostics works on other models, we train both DeepSeek
Coder 6.7B Instruct (Guo et al. 2024) and Phi 4 Mini In-
struct (Microsoft et al. 2025) with Ag-Codeforces-X spe-
cialized to Julia, Lua, and R. Agnostics is able to improve
the performance of both models on all languages, as mea-
sured by MultiPL-E and Ag-LiveCodeBench-X with one
exception (Table 5). Phi 4 Mini Instruct scores zero on



Table 5: Pass@1 rates for DeepSeek Coder V1 and Phi 4
models trained using Ag-Codeforces-X. We find that Ag-
nostics works on other model families.

Model MultiPL-E Ag-LCB-X
X= Lua Julia R X= Lua Julia R

Phi4-mini-ins 40 39 34 7 7 0
DSC-6.7B-Ins 40 54 37 8 5 7
Phi4-mini-ins-CF-X (Ours) 41 43 35 11 8 0
DSC-6.7B-Ins-CF-X (Ours) 42 55 52 9 9 9

Ag-LiveCodeBench-R, and training does not improve the
score. However, on the easier MultiPL-E benchmark, we
see that the model is slightly better on simpler R problems
(34 → 35).

Note that DeepSeek Coder 6.7B is a relative old LLM, su-
perseded by the much larger DeepSeekV2 and V3 models.
Unlike Qwen 3, DeepSeek Coder is not trained with rein-
forcement learning, but is only an instruction-tuned model.
Thus this result also shows that Agnostics can work on mod-
els that have had relatively limited post-training.

4.4 Qualitative Improvements
In this section we take a deeper look at how training with
Agnostics addresses the kinds of errors that Qwen 3 4B
makes on low-resource languages. First, we define a taxon-
omy of common bugs by prompting an LLM (o3) to clas-
sify bugs in a sample of faulty programs and then lightly
editing the suggestion. §E has the full taxonomy and the
prompt we used to develop it. The taxonomy spans funda-
mental programming errors, such as syntax errors, and more
subtle mistakes such as logic flaws.

We then sample 100 problems from Ag-LiveCodeBench-
X, and take five programs produced by Qwen 3 4B and
the Agnostics models trained on Open-R1 Codeforces prob-
lems. Recall from Table 1 that these are significantly better
than Qwen 3 4B. Using Sonnet 4, we use the taxonomy to
classify the bugs in each program.

Figure 6 shows the bug distribution for OCaml. We see
that the base Qwen 3 4B models makes substantially more
fundamental programming mistakes in OCaml. More pro-
grams have syntax errors (55% vs 35% after training), more
programs misuse builtin functions (60% vs 32%), and so on.
However, we observe a small increase in logic flaws (18% vs
25% after training). Inspecting the results, the reason for this
is that when a program is full of syntax errors and halluci-
nated functions, it is very difficult to even determine whether
or not the algorithmic approach is correct. Training elimi-
nates these shallow bugs and lets deeper issues manifest. We
see the same patterns across the other four languages (§E).

5 Conclusion
LLMs are strongest where pre-training and post-training
data are abundant, and weakest where practitioners arguably
need them most: for low-resource programming languages.
This paper proposes Agnostics, a language-agnostic post-
training pipeline that removes the per-language engineering
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Figure 6: We classify with an LLM what bugs appear in
programs produced by Qwen 3 4B and our trained model,
Qwen3-4B-CF-OCaml. Each radial represents a bug cate-
gory, and points along the radial indicate how many pro-
grams appear to have that bug. Qwen 3 4B makes more fun-
damental programming mistakes, such as syntax errors and
misusing builtins, indicating its limited grasp of OCaml. Our
trained model makes significantly fewer such mistakes. We
see a small increase in logic flaws: the trained model makes
fewer shallow mistakes, revealing deeper issues.

tax by verifying code purely via externally observable be-
havior. A single verifier and a short configuration are enough
to adapt the same reinforcement learning setup to new lan-
guages.

Empirically, Agnostics consistently improves small open-
weight models on five low-resource languages–Lua, Julia,
R, OCaml, and Fortran–without requiring language-specific
test translators. Training Qwen-3 4B with Ag-Codeforces-
X yields large gains on our new Ag-LiveCodeBench-X
benchmark and on MultiPL-E, often rivaling or surpass-
ing 16B–70B open-weight baselines. The method scales
to larger and different model families: Qwen-3 8B bene-
fits similarly, and we observe improvements on DeepSeek
Coder 6.7B and Phi-4 Mini as well. Error-type analy-
sis shows that the gains come from reducing fundamental
language-usage mistakes.

A practical advantage of the approach is how little per-
language work it requires. After the framework was in place,
adding OCaml and Fortran took us less than an hour each.
We expect adoption to be just as straightforward for any lan-
guage with a command-line toolchain.

We see no reason to expect the approach to not work for
models larger than 8B, although our experiments are lim-
ited by available compute. For scaling data, the Agnostics
reformulation strategy apply to much larger problem sets as
well. For instance, OpenCodeReasoning has ∼600K prob-



lems with Python solutions (Ahmad et al. 2025); converting
such corpora into language-agnostic I/O tasks would provide
rich RL datasets with many target languages with minimal
additional engineering.
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Figure 7: Rewards each step from training Qwen 3 4B on
Fortran and OCaml. These are very low-resource languages,
and rewards are zero for the first several steps.

A Efficiency of Rejection Sampling
An alternative to reinforcement learning is to use rejection
sampling with supervised fine-tuning: prompt the model to
synthesize n solutions to each task, reject solutions that fail
tests, and fine-tune on the task-solution pairs that pass tests.
If the model is weak at a task, which is the case with low-
resource languages, then it is possible for all solutions to fail
for a given task. Cassano et al. (2024) use this approach to
get solutions for ≈ 30% of the tasks in their dataset. They
use n = 50 for Lua and Julia, but increase to n = 100 for
OCaml.

The efficiency of this approach depends on the hardness
of the task and the capabilities of the model. In this paper,
we work with newer models that are marginally better at
low-resource languages (based on MultiPL-E benchmark re-
sults). The task in Cassano et al. (2024) is to translate a sim-
ple, self-contained Python function from the model’s pre-
training data into an equivalent function in another program-
ming language. This task is significantly easier than the Ag-
nostics task, which is to solve a competitive programming
problem in a low-resource language, without any reference
code or tests.

We can estimate the efficiency of rejection sampling from
the rewards assigned in the early steps of reinforcement
learning, when the policy is closest to the initial policy. Fig-
ure 7 shows the pass1 rates while training Qwen 3 4B on
Fortran and OCaml. In the first 200 steps, the average pass
rate for Fortran and OCaml are 1.9% and 1.1% respectively–
considerably less than the 30% success rate reported by Cas-
sano et al. (2024) on their code translation task, making the
rejection sampling approach prohibitively expensive for the
low-resource language setting.

B Preparing Datasets for Agnostics
Ag-MBPP-X is a dataset of Mostly Basic Programming
Problems, transformed from the MBPP (Austin et al. 2021)
dataset. The source dataset contains problems asking to
complete a Python function from on its signature and a doc-

string, where the docstring specifies what result the func-
tion should return; our dataset contains equivalent programs
which read/write the same data from/to standard input/out-
put. Out of 974 problems, we are able to translate 776 prob-
lems into Ag-MBPP-X (348 problems are in the sanitized
subset of MBPP).

Processing the dataset with Qwen3-32B took less than 1
hour using 2 H100 GPUs. Figures 3a and 3b in the main
body of the paper shows a sample problem from the dataset,
before and after the reformulation. We used the following
prompt.
You are a competitive programming expert.
You are given a problem that asks you to

implement a function.
Your task is to translate the description of

the problem into a form that accepts
one set of function arguments as inputs
and return the function return value as
output.

Use programming competition style input and
outputs -- that is, priorize the use of
spaces and newlines to separate inputs
and outputs over using commas and
parentheses (or other delimiters).
Specifically, for 2d lists, you should
print them as a list of lists, where the
outer lists elements are separated by

newlines and the elements of the inner
lists are separated by spaces.

For example, a 2d list like [[1, 2], [3, 4]]
should be printed as:

1 2
3 4
Do not use any other delimiters.

If there are multiple 2d lists, you should
use 2 newlines to separate them.

for example, a 2d list like [[1, 2], [3, 4]]
and [[5, 6], [7, 8]] should be printed

as:
1 2
3 4

5 6
7 8

If the problem requires outputing decimal
numbers, make sure the output format
specifies to round all decimal numbers
to 4 decimal places. In this case, you
should also round all the numbers in the
output to 4 decimal places.

Do not forget to specify the input and
output format in the description.

Here is the problem description:
{original mbpp problem description}

Here are the test cases:
{original mbpp test cases}



You should return a json object with the
following fields:

- "description": the description of the
problem

- "input_format": a string describing the
input format

- "output_format": a string describing the
output format

- "tests": a list of test cases, each test
case is a json object with the following
fields:

- "input": a string that represents the
input of the test case, in the same
format as the input format in the
description

- "output": a string that represents the
output of the test case, in the same
format as the output format in the
description

Place your response in a single ‘‘‘json ‘‘‘
block. Do not include any other text in
your response.

Ag-Codeforces-X is a dataset of competitive program-
ming problems, created from Codeforces problems in the
open-r1/codeforces dataset. The source problems
already specified programs by their I/O behavior, hence
only very minor changes were needed to build language-
universal Agnostics problems out of the fields in the
dataset: we only skipped the time and memory restrictions
present in the original problems. To be precise, we used
data from the open-r1/codeforces-cots dataset,
solutions py decontaminated subset, which con-
tains problems decontaminated using 8-gram overlap against
multiple benchmarks, in particular LiveCodeBench. We
used the auxilliary checker interactor subset to only
keep the problems which admit a simple verifier for their
solutions, i.e., problems where a single output is correct for
each input and where the solution only needs to read data
from its input, compute the result, and write it to the standard
output. We prepared both a train and a test split. The former
contains 5369 problems and the latter contains 107 problems
we held out from the source dataset, 7 selected manually and
100 randomly. The train split features randomized prompts,
which we found help with generalizing the results of train-
ing on the dataset to other benchmarks. The prompts were
randomly split into a number of types. 30% of the prompts
use standard Markdown headings to start different sections
of the prompt, 35% use bold text instead, and the remaining
35% simply concatenate the prompt sections together. Half
of the prompts of the final type also do not include an I/O
sample in the prompt.

Ag-LiveCodeBench-X is also a dataset of competitive
programming problems, created from a subset of the Live-
CodeBench dataset (Jain et al. 2024b). LiveCodeBench 5.0
has 880 problems, of which 381 have Python starter code
and test cases. The remaining 499 problems do not use
starter code and instead use standard I/O to specify and test
solutions. Hence we used these problems to transform Live-
CodeBench into an Agnostics dataset. Ag-LiveCodeBench-

X only has a train split, like its source dataset.

C Agnostics Configurations
In this section, we list the configurations that we use for our
target languages. The configuration files use YAML. The
prompts for OCaml and Fortran have instructions generated
by OpenAI o3.

The Lua configuration:

prompt: Use Lua 5.1, targeting LuaJIT.
install: apt-get install -y luajit
filename: snippet.lua
execute: luajit snippet.lua

The Julia configuration:

prompt: Use Julia 1.11.
container:

base-image: "julia:1.11.3"
type: debian

filename: snippet.jl
execute: julia snippet.jl

The R configuration (the same as Figure 4, repeated here
for convenience):

install: apt-get install -y r-cran-tidyverse
filename: snippet.R
execute: Rscript snippet.R
prompt: |

Use R version 4.
Use ‘readLines(con = file("stdin"))‘ to
read input from stdin. Optionally, use
the ‘n‘ argument to read the first ‘n‘
lines. For example:
‘‘‘r
input <- readLines(con = file("stdin"), n
= 1)

n <- as.integer(input)
print(n) # print the first line of input
‘‘‘
Also, use ‘cat‘ to print output to stdout.
For example:
‘‘‘r
cat(n)
‘‘‘
Please do not use ‘print‘ to print output.

The OCaml configuration:

prompt: |
Use OCaml 5.

Numbers: + - * / mod vs. +. -. *. /.
** (add dots!)

Casts: float_of_int int_of_float
int_of_string

Mutation: refs (:= !) or pass new values
recursively

Strings: split_on_char, String.get =>
char, use Printf "%c"

Lists: avoid List.nth; prefer pattern-
match / folds / arrays



container:
base-image: "docker.io/ocaml/opam:ubuntu
-22.04-ocaml-5.0"

type: debian
install:

container-instructions: |
RUN opam install base stdio utop
ENV OPAM_SWITCH_PREFIX=’/home/opam/.opam
/5.0’
ENV CAML_LD_LIBRARY_PATH=’/home/opam/.
opam/5.0/lib/stublibs:/home/opam/.opam
/5.0/lib/ocaml/stublibs:/home/opam/.opam
/5.0/lib/ocaml’
ENV OCAML_TOPLEVEL_PATH=’/home/opam/.
opam/5.0/lib/toplevel’
ENV MANPATH=’:/home/opam/.opam/5.0/man’
ENV PATH=’/home/opam/.opam/5.0/bin:/usr/
local/sbin:/usr/local/bin:/usr/sbin:/usr
/bin:/sbin:/bin’

filename: snippet.ml
execute: utop -require base -require stdio

snippet.ml

The Fortran configuration:

prompt: |
Use Fortran 90. Some tips:

Always begin each scope with implicit none
, pick explicit kinds via

selected_*_kind, and declare proper
lengths-character(len=*) is legal only
for

dummy arguments, not locals. Strings are
blank-padded: call len_trim before

iterating, and store dynamic text in
deferred-length allocatables

(character(len=:), allocatable :: s).
List-directed read(*,*) arr does not

auto-size arrays; read a count first, then
allocate and read, or tokenize a

line manually. When translating 0-based
formulas (heaps, bit positions)

remember Fortran arrays default to 1-based
; if you want 0-based, declare lower

bounds. Use real literals (2.0d0, 1.0_rk)
to avoid silent integer division,

and guard against overflow when
exponentiating integers. For frequency
tables,

allocate an array or use findloc; Fortran
lacks native dicts/sets, so you must

implement search yourself. Prefer array
intrinsics (sum, count, pack) over

hand-rolled loops, and keep helper
procedures inside a contains section or

module so interfaces are explicit. return
inside the main program is

non-idiomatic; use structured blocks or
stop. Never print interactive prompts

in batch solutions; just read, compute,
and write.

install: apt-get install -y gfortran
filename: snippet.f90
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Figure 8: Training Qwen3-4B-CF-X, GRPO group batch
pass@1.
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Figure 9: Training Qwen3-4B-CF-X, test split pass@1.

compile: gfortran -o snippet.out snippet.f90
execute: ./snippet.out

D Training and Results
D.1 Choosing hyperparameters
Before picking the hyperparameters described in §3.3, we
investigated other values by training the Qwen 3 4B model
on a previous version of Ag-Codeforces-X. We trained two
models for each of Lua, Julia and R, using a linear learn-
ing rate schedule with the same learning rate. We decided
against it since some of the runs degraded the model’s ca-
pabilities, unlike any of the runs we did with a cosine decay
schedule. We also compared between GRPO group sizes of
16, 32 and 64 by training the same model on Lua. We ob-
served that in some runs with group size 16, the model im-
proved significantly less than at higher group sizes. Since we
found no significant difference between group sizes 32 and
64, we chose the smaller one due to limited resources.

D.2 Training dynamics
In this section we discuss the measurements we took while
training the models. Figure 8 shows the GRPO group batch
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Figure 10: Training Qwen3-4B-CF-Lua, GRPO group batch
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Figure 11: Training Qwen3-4B-CF-Julia, GRPO group
batch and test split pass@1.
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Figure 12: Training Qwen3-4B-CF-R, GRPO group batch
and test split pass@1.

0 250 500 750 1000 1250
Training step

0.00

0.05

0.10

0.15

pa
ss

@
1

OCaml training curves
train
test

Figure 13: Training Qwen3-4B-CF-OCaml, GRPO group
batch and test split pass@1.
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Figure 14: Training Qwen3-4B-CF-Fortran, GRPO group
batch and test split pass@1.



pass@1 while training the Qwen3-4B-CF-X models. The
scores of all the models are broadly correlated with one an-
other, in part due to training them on the same permutation
of the training data. Figures 10 to 14 compare the GRPO
group pass@1 scores with the pass@1 scores on the test
split. We see that the scores on the test split is broadly corre-
lated with the train split rewards. In most cases, we see that
the train scores keep increasing until the end of the epoch,
together with the test split pass@1 scores, indicating that the
model keeps improving until the end of the dataset.

D.3 Hardware and Software Used
We used three machines while working on this paper: B, R1
and R2. R2 was only used to generate completions of trained
models for evaluation, while B and R1 were used to train
models. Upon publication of the paper, we will publicly re-
lease Wandb records of our training runs, which include the
duration and the machine used.

B has 2 Intel Xeon Gold 6342 CPUs @ 2.80GHz, 1008
GB of RAM, 4 NVIDIA H100 80GB, and uses Ubuntu
22.04.5 LTS.

R1 has 2 AMD EPYC 9454 48-Core CPUs, 8 NVIDIA
H100 80GB (with NVLink connections), 2268 GB of RAM,
and uses Ubuntu 22.04.5 LTS.

R2 has 2 Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz,
10 NVIDIA RTX A600, 504 GB of RAM, and uses Ubuntu
22.04.5 LTS.

When developing the Agnostics framework, we used
the following major Python libraries: ray v2.46.0,
torch v2.6.0, transformers v4.54.1, vllm
v0.8.5.post1, datasets v3.4.1, wandb
0.19.11.

E Bug Taxonomy
E.1 Prompt for Generating Taxonomy
We used the following instructions to generate the bug tax-
onomy, followed by a list of faulty R programs.

Input: The attached file contains multiple failed R
programs (Version 4) with their:

• Source code
• Expected output
• Actual standard output
• Error messages (where applicable)

Objective: Analyze these program failures systemat-
ically to create a comprehensive taxonomy of 10-12
bug themes that categorize the underlying causes of
failure.
Instructions:
1. Initial Analysis

• Read through ALL program examples carefully
• For each failure, identify the root cause (not just

the symptom)
• Note any patterns or commonalities across fail-

ures
2. Taxonomy Development

• Create 10-12 distinct bug themes that collectively
cover all observed failures

• Each theme should represent a fundamental type
of programming error or misconception

• Themes should be mutually exclusive when pos-
sible, but comprehensive in coverage

• Order themes from most to least frequent (or by
logical grouping)

3. For Each Bug Theme, Provide:
• Theme Name: A concise, descriptive title
• Description: 2-3 sentences explaining the nature

of this bug type
• Common Symptoms: How these bugs typically

manifest (error messages, incorrect output, etc.)
• Root Causes: The underlying programming mis-

takes or misconceptions
• Examples: Reference 2-3 specific programs from

the file that exhibit this theme
• Prevention Tips: Brief advice on how to avoid this

type of bug
4. Constraints:

• Focus on R-specific issues as well as general pro-
gramming errors

• Base your taxonomy ONLY on the provided ex-
amples

• You may search online ONLY to understand spe-
cific R error messages or function behavior, not
for existing bug taxonomies

• Ensure every failed program in the file can be clas-
sified under at least one theme

5. Deliverable Format: Present your taxonomy as a
numbered list with clear formatting and compre-
hensive coverage of all observed failure patterns.
Supply a short explanation for each theme in your
taxonomy.

The prompt produced a taxonomy of 11 bug categories.
We edited these categories and selected 7 categories relevant
to us, shown in §E.2.

E.2 Bug Taxonomy Used For Analysis
The following categories represent the prevalent themes of
programming errors we use in our analysis of bugs in model-
generated code. They cover the full spectrum of parse, run-
time, and logical failures typically encountered in program-
ming. The themes are not mutually exclusive; we allow a
program to have more than one themes.

1. Syntax and Typographical Errors: Missing commas,
mismatched parentheses, or other typos that cause
compile-time parse errors.

2. Input Reading and Parsing Errors: Mis-reading or
mis-parsing input, leading to empty or malformed vari-
ables and subsequent failures.

3. Uninitialized Variables: References to variables never
defined, causing undefined behavior or runtime faults.
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Figure 15: Radar chart of Lua error themes for Qwen3-4B
and Qwen3-4B-CF-Lua.

4. Data Type and Conversion Errors: Incorrect casting or
type misuse that triggers type errors, warnings, or incor-
rect results.

5. Function Misuse and Missing Libraries: Invocations of
non-existent or mis-parameterized functions, or missing
imports/libraries, causing errors.

6. Algorithmic Logic Flaws: Programs that compile and
run but produce wrong answers due to faulty logic or
conditions.

7. Output Formatting and Presentation Errors: Correct
computational results, but incorrect due to formatting is-
sues (e.g. missing newlines/spaces or output spec viola-
tions).

E.3 Radar Charts for All Programming
Languages

Figures 15, 16, 17, 18, 19 show the error theme charts for
all the programming languages we trained a model on. Fig-
ure 18 is the same as Figure 6 from the main body; we re-
peated it here for convenience.

F Reproducibility Checklist
This paper:
• Includes a conceptual outline and/or pseudocode descrip-

tion of AI methods introduced: yes
• Clearly delineates statements that are opinions, hypothe-

sis, and speculation from objective facts and results: yes
• Provides well marked pedagogical references for less-

familiar readers to gain background necessary to repli-
cate the paper: yes

Does this paper make theoretical contributions? No.
Does this paper rely on one or more datasets? Yes.
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Figure 16: Radar chart of Julia error themes for Qwen3-4B
and Qwen3-4B-CF-Julia.

• A motivation is given for why the experiments are con-
ducted on the selected datasets: yes.

• All novel datasets introduced in this paper are included
in a data appendix: no.

• All novel datasets introduced in this paper will be made
publicly available upon publication of the paper with a
license that allows free usage for research purposes: yes.

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are accompanied by appropriate citations: yes.

• All datasets drawn from the existing literature (poten-
tially including authors’ own previously published work)
are publicly available: yes.

• All datasets that are not publicly available are described
in detail, with explanation why publicly available alter-
natives are not scientifically satisfying: N/A.

Does this paper include computational experiments?
Yes.

• This paper states the number and range of values tried
per (hyper-) parameter during development of the paper,
along with the criterion used for selecting the final pa-
rameter setting: yes.

• Any code required for pre-processing data is included in
the appendix: no.

• All source code required for conducting and analyzing
the experiments is included in a code appendix: no.

• All source code required for conducting and analyzing
the experiments will be made publicly available upon
publication of the paper with a license that allows free
usage for research purposes: yes.



Syntax and
Typographical

Errors

Input Reading
and Parsing

Errors

Uninitialized
Variables

Data Type and
Conversion

Errors

Function
Misuse and

Missing
Libraries

Algorithmic
Logic Flaws

Output
Formatting and

Presentation
Errors

0%15%30%45%60%75%

Qwen3-4B
Qwen3-4B-CF-R

Figure 17: Radar chart of R error themes for Qwen3-4B and
Qwen3-4B-CF-R.

• All source code implementing new methods have com-
ments detailing the implementation, with references to
the paper where each step comes from: no.

• If an algorithm depends on randomness, then the method
used for setting seeds is described in a way sufficient to
allow replication of results: yes.

• This paper specifies the computing infrastructure used
for running experiments (hardware and software), includ-
ing GPU/CPU models; amount of memory; operating
system; names and versions of relevant software libraries
and frameworks: yes.

• This paper formally describes evaluation metrics used
and explains the motivation for choosing these metrics:
yes.

• This paper states the number of algorithm runs used to
compute each reported result: yes.

• Analysis of experiments goes beyond single-dimensional
summaries of performance (e.g., average; median) to in-
clude measures of variation, confidence, or other distri-
butional information: no.

• The significance of any improvement or decrease in
performance is judged using appropriate statistical tests
(e.g., Wilcoxon signed-rank): no.

• This paper lists all final (hyper-)parameters used for each
model/algorithm in the paper’s experiments: yes.
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Figure 18: Radar chart of OCaml error themes for Qwen3-
4B and Qwen3-4B-CF-OCaml.
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Figure 19: Radar chart of Fortran error themes for Qwen3-
4B and Qwen3-4B-CF-Fortran.
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