
Keeping Track of Capabilities

MARTIN ODERSKY, EPFL
ALEKSANDER BORUCH-GRUSZECKI, EPFL
EDWARD LEE, University of Waterloo

JONATHAN BRACHTHÄUSER, Eberhard Karls University of Tübingen

ONDŘEJ LHOTÁK, University of Waterloo

Type systems usually characterize the shape of values but not their free variables. However, many desirable

safety properties could be guaranteed if one knew the free variables captured by values. We describe CC<:□ ,

a calculus where such captured variables are succinctly represented in types, and show it can be used to

safely implement effects and effect polymorphism via scoped capabilities. We discuss how the decision to track

captured variables guides key aspects of the calculus, and show that CC<:□ admits simple and intuitive types

for common data structures and their typical usage patterns. We demonstrate how these ideas can be used to

guide the implementation of capture checking in a practical programming language.

1 INTRODUCTION
Effects are aspects of computation that go beyond describing shapes of values and that we still want

to track in types. What exactly is modeled as an effect is a question of language or library design.

Some possibilities are: reading or writing to mutable state outside a function, throwing an exception

to signal abnormal termination of a function, I/O including file operations, network access, or user

interaction, non-terminating computations, suspending a computation e.g., waiting for an event, or

using a continuation for control operations.

Despite hundreds of published papers there is comparatively little adoption of static effect

checking in programming languages. The few designs that are widely implemented (for instance

Java’s checked exceptions or monadic effects in some functional languages) are often critiqued for

being both too verbose and too rigid. The problem is not lack of expressiveness – systems have

been proposed and implemented for many quite exotic kinds of effects. Rather, the problem is

simple lack of usability and flexibility, with particular difficulties in describing polymorphism. This

leads either to overly complex definitions, or to the requirement to duplicate large bodies of code.

Classical type-systematic approaches fail since effects are inherently transitive along the edges

of the dynamic call-graph: A function’s effects include the effects of all the functions it calls,

transitively. Traditional type and effect systems have no lightweight mechanism to describe this

behavior. The standard approach is either manual specialization along specific effect classes, which

means large-scale code duplication, or quantifiers on all definitions along possible call graph edges

to account for the possibility that some call target has an effect, which means large amounts of

boilerplate code. Arguably, it is this problem more than any other that has so far hindered wide

scale application of effect systems.

A promising alternative that circumvents this problem is to model effects via capabilities

[Brachthäuser et al. 2020a; Gordon 2020; Liu 2016; Marino and Millstein 2009; Osvald et al. 2016].

Capabilities exist in many forms, but we will restrict the meaning here to simple object capabilities

Authors’ addresses: Martin Odersky, EPFL, martin.odersky@epfl.ch; Aleksander Boruch-Gruszecki, EPFL, aleksander.boruch-

gruszecki@epfl.ch; Edward Lee, University of Waterloo, e45lee@uwaterloo.ca; Jonathan Brachthäuser, Eberhard Karls

University of Tübingen, jonathan.brachthaeuser@uni-tuebingen.de; Ondřej Lhoták, University of Waterloo, olhotak@

uwaterloo.ca.

2023. 0164-0925/2023/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

represented as regular program variables. For instance, consider the following two formulations of

a method in Scala
1
which are morally equivalent:

def f(): T throws E

def f()(using ct: CanThrow[E]): T

The first version looks like it describes an effect: Function f returns a T, or it might throw exception

E. The effect is mentioned in the return type throws[T, E] where the throws is written infix.

The second version expresses analogous information as a capability: Function f returns a value

of type T, provided it can be passed a capability ct of type CanThrow[T]. The capability is modelled

as a parameter. To avoid boilerplate, that parameter is synthesized automatically by the compiler at

the call site assuming a matching capability is defined there. This is expressed by a using keyword,

which indicates that a parameter is implicit in Scala 3 (Scala 2 would have used the implicit
keyword instead). The fact that capabilities are implicit rather than explicit parameters helps

with conciseness and readability of programs, but is not essential for understanding the concepts

discussed in this paper.

Aside: The link between the “effect” and the “capability” version of f can be made more precise

by means of implicit function types [Odersky et al. 2018]. It is embodied in the following definition

of the throws type:

infix type throws[T, E <: Exception] = CanThrow[E] ?=> T

The implicit function type CanThrow[E] ?=> T represents functions from CanThrow[E] to T that

are applied implicitly to arguments synthesized by the compiler. This gives a direct connection

between the effect view based on the throws type and the capability view based on its expansion.

An important benefit of this switch from effects to capabilities is that it gives us polymorphism

for free. For instance, consider the map function in class List[A]. If we wanted to take effects into

account, it would look like this:

def map[B, E](f: A -> B eff E): List[B] eff E

Here, A -> B eff E is hypothetical syntax for the type of functions from A to B that can have

effect E. While looking reasonable in the small, this scheme quickly becomes unmanageable, if we

consider that every higher-order function has to be expanded that way and, furthermore, that in

an object-oriented language almost every method is a higher-order function [Cook 2009]. Indeed,

many designers of programming languages with support for effect systems agree that programmers

should ideally not be confronted with explicit effect quantifiers [Brachthäuser et al. 2020a; Leijen

2017; Lindley et al. 2017].

On the other hand, here is the type of map if we represent effects with capabilities.

def map(f: A => B): List[B]

Interestingly, this is exactly the same as the type of map in current Scala, which does not track effects!
In fact, compared to effect systems, we now decompose the space of possible effects differently: map
is classified as pure since it does not produce any effects in its own code, but when analyzing an

application of map to some argument, the capabilities required by the argument are also capabilities

required by the whole expression. In that sense, we get effect polymorphism for free.

The reason this works is that in an effects-as-capabilities discipline, the type A => B represents

the type of impure function values that can close over arbitrary effect capabilities. (Alongside, we

also define a type of pure functions A -> B that are not allowed to close over capabilities.)

1
Scala 3.1 with language import saferExceptions enabled.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 3

This seems almost too good to be true, and indeed there is a catch: It now becomes necessary to

reason about capabilities captured in closures, ideally by representing such knowledge in a type

system.

class TooLarge extends Exception

def f(x: Int): Int throws TooLarge =

if x < limit then x * x

else throw TooLarge ()

val xs: List[Int]

try xs.map(x => f(x))

catch case TooLarge => Nil

def f(x: Int)

(using CanThrow[TooLarge]): Int =

if x < limit then x * x

else throw TooLarge ()

val xs: List[Int]

try xs.map(x =>

f(x)(using new CanThrow[TooLarge]))

catch case TooLarge => Nil

Fig. 1. Exception handling: source (left) and compiler-generated code (right)

To see why, consider that effect capabilities are often scoped and therefore have a limited lifetime.

For instance a CanThrow[E] capability would be generated by a try expression that catches E. It is
valid only as long as the try is executing. Figure 1 shows an example of capabilities for checked

exceptions, both as source syntax on the left and with compiler-generated implicit capability

arguments on the right. The following slight variation of this program would throw an unhandled

exception since the function f is now evaluated only when the iterator’s next method is called,

which is after the try handling the exception has exited.

val it =

try xs.iterator.map(f)

catch case TooLarge => Iterator.empty

it.next()

A question answered in this paper is how to rule out Iterator’s lazy map statically while still

allowing List’s strict map. A large body of research exists that could address this problem by

restricting reference access patterns. Relevant techniques include linear types [Wadler 1990], rank 2

quantification [Launchbury and Sabry 1997], regions [Grossman et al. 2002; Tofte and Talpin 1997],

uniqueness types [Barendsen and Smetsers 1996], ownership types [Clarke et al. 1998; Noble et al.

1998], and second class values [Osvald et al. 2016]. A possible issue with many of these approaches

is their relatively high notational overhead, in particular when dealing with polymorphism.

The approach we pursue here is different. Instead of restricting certain access patterns a priori,

we focus on describing what capabilities are possibly captured by values of a type. At its core there

are the following two interlinked concepts:

• A capturing type is of the form {𝑐1, . . . , 𝑐𝑛} 𝑇 where 𝑇 is a type and {𝑐1, . . . , 𝑐𝑛} is a capture
set of capabilities.

• A capability is a parameter or local variable that has as type a capturing type with non-empty

capture set. We call such capabilities tracked variables.

Every capability gets its authority from some other, more sweeping capabilities which it captures.

The most sweeping capability, from which ultimately all others are derived, is “∗”, the universal
capability.

As an example how capabilities are defined and used, consider a typical try-with-resources pattern:

def usingFile[T](name: String , op: ({*} OutputStream) => T): T =

val f = new FileOutputStream(name)

val result = op(f)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

4 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

f.close()

result

val xs: List[Int] = ...

def good = usingFile("out", f => xs.foreach(x => f.write(x)))

def fail =

val later = usingFile("out",

f => (y: Int) => xs.foreach(x => f.write(x + y)))

later (1)

The usingFile method runs a given operation op on a freshly created file, closes the file, and

returns the operation’s result. The method enables an effect (writing to a file) and limits its validity

(to until the file is closed). Function good invokes usingFile with an operation that writes each

element of a given list xs to the file. By contrast, function fail represents an illegal usage: It

invokes usingFile with an operation that returns a function that, when invoked, will write list

elements to the file. The problem is that the writing happens in the application later(1) when
the file has already been closed.

We can accept the first usage and reject the second by marking the output stream passed to op as
a capability. This is done by prefixing its type with {*}. Our prototype implementation of capture

checking will then reject the second usage with an error message.

This example used a capability parameter that was directly derived from *. But capabilities can
also be derived from other non-universal capabilities. For instance:

def usingLogFile[T](f: {*} OutputStream , op: ({f} Logger) => T): T =

op(Logger(f))

The usingLogFile method takes an output stream (which is a capability) and an operation, which

gets passed a Logger. The Logger capability is derived from the output stream capability, as can

be seen from its type {f} Logger.
This paper develops a capture calculus,CC<:□ , as a foundational type system that allows reasoning

about scoped capabilities. By sketching a prototype language design based on this calculus, we argue

that it is expressive enough to support a wide range of usage patterns with very low notational

overhead. The paper makes the following specific contributions.

• We define a simple yet expressive type system for tracking captured capabilities in types.

The calculus extends F<: with capture sets of capabilities.

• We prove progress and preservation of types relative to a small-step evaluation semantics. We

also prove a capture prediction lemma that states that capture sets in types over-approximate

captured variables in runtime values.

• We illustrate the practical applicability of the calculus with a number of examples that have

been checked by a prototype capture checker implemented within the Scala 3 compiler.

The presented design is at the same time simple in theory and concise and flexible in its practical

application. We demonstrate that the following elements are essential for achieving good usability:

• Use reference-dependent typing, where a formal function parameter stands for the potential

references captured by its argument [Brachthäuser et al. 2022; Odersky et al. 2021]. This

avoids the need to introduce separate binders for capabilities or effects. Technically, this

means that references (but not general terms) can form part of types as members of capture

sets. A similar approach is taken in the path-dependent typing discipline of DOT [Amin et al.

2016; Rompf and Amin 2016] and by reachability types for alias checking [Bao et al. 2021].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 5

• Employ a subtyping discipline that mirrors subsetting of capabilities and that allows capa-

bilities to be refined or abstracted. Subtyping of capturing types relies on a new notion of

subcapturing that encompasses both subsetting (smaller capability sets are more specific than

larger ones) and derivation (a capability singleton set is more specific than the capture set

of the capability’s type). Both dimensions are essential for a flexible modelling of capability

domains.

• Limit propagation of capabilities in instances of generic types where they cannot be accessed

directly. This is achieved by boxing types when they enter a generic context and unboxing

on every use site [Brachthäuser et al. 2022].

Whereas many of our motivating examples describe applications in effect checking, the formal

treatment presented here does not mention effects. In fact, the effect domains are intentionally kept

open since they are orthogonal to the aim of the paper. Effects could be exceptions, file operations

or region allocations, but also algebraic effects, IO, or any sort of monadic effects. To express more

advanced control effects, one usually needs to add continuations to the operational semantics, or

use an implicit translation to the continuation monad. In short, capabilities can delimit what effects

can be performed at any point in the program but they by themselves don’t perform an effect

[Brachthäuser et al. 2020a; Gordon 2020; Liu 2016; Marino and Millstein 2009; Osvald et al. 2016].

For that, one needs a library or a runtime system that would be added as an extension of CC<:□ .

Since CC<:□ is intended to work with all such effect extensions, we refrain from adding a specific

extension to its operational semantics.

The version of CC<:□ presented here evolved from a system that was originally proposed to

make exception checking safe [Odersky et al. 2021]. The earlier paper described a way to encode

information about potentially raised exceptions as object capabilities passed in parameters. It noted

that the proposed system is not completely safe since capabilities can escape in closures and it

hypothesized a possible way to fix the problem by presenting a draft of what became CC<:□ . At

the time, the meta theory of the proposed system was not worked out yet and the progress and

preservation properties were left as conjectures. The present paper presents a fully worked-out

meta theory with proofs of type soundness as well as a semantic characterization of capabilities.

There are some minor differences in the operational semantics, which were necessary to make a

progress theorem go through. We also present a range of use cases outside of exception handling,

demonstrating the broad applicability of the calculus.

The rest of this paper is organized as follows. Section 2 explains and motivates the core elements

of our calculus. Section 3 presents CC<:□ . Section 4 lays out its meta-theory. Section 5 illustrates

the expressiveness of typing disciplines based on the calculus in examples. Section 6 discusses

related work and Section 7 concludes.

2 INFORMAL DISCUSSION
This section motivates and discusses some of the key aspects of capture checking. All examples are

written in an experimental language extension of Scala 3 [Scala 2022a] and were compiled with our

prototype implementation of a capture checker [Scala 2022b].

2.1 Capability Hierarchy
We have seen in the intro that every capability except ∗ is created from some other capabilities

which it retains in the capture set of its type. Here is an example that demonstrates this principle:

class FileSystem

class Logger(fs: {*} FileSystem):

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

6 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

def log(s: String): Unit = ... // Write to a log file , using `fs`

def test(fs: {*} FileSystem): {fs} LazyList[Int] =

val l: {fs} Logger = new Logger(fs)

l.log("hello␣world!")

val xs: {l} LazyList[Int] =

LazyList.from (1)

.map { i =>

l.log(s"computing␣elem␣#␣$i")

i * i

}

xs

Here, the test method takes a FileSystem as a parameter. fs is a capability since its type has a

non-empty capture set. The capability is passed to the Logger constructor and retained as a field in
class Logger. Hence, the local variable l has type {fs} Logger: it is a Logger which retains the

fs capability.
The second variable defined in test is xs, a lazy list that is obtained from LazyList.from(1)

by logging and mapping consecutive numbers. Since the list is lazy, it needs to retain the reference

to the logger l for its computations. Hence, the type of the list is {l} LazyList[Int]. On the

other hand, since xs only logs but does not do other file operations, it retains the fs capability only

indirectly. That’s why fs does not show up in the capture set of xs.
Capturing types come with a subtype relation where types with “smaller” capture sets are

subtypes of types with larger sets (the subcapturing relation is defined in more detail below). If a

type T does not have a capture set, it is called pure, and is a subtype of any capturing type that adds

a capture set to T.

2.2 Function Types
The function type A => B stands for a function that can capture arbitrary capabilities. We call such

functions impure. By contrast, the new single arrow function type A -> B stands for a function
that cannot capture any capabilities, or otherwise said, is pure. One can add a capture set in front

of an otherwise pure function. For instance, {c, d} A -> B would be a function that can capture

capabilities c and d, but no others.

The impure function type A => B is treated as an alias for {*} A -> B. That is, impure functions

are functions that can capture anything.

Function types and captures both associate to the right, so {c} A -> {d} B -> C is the same as

{c} (A -> {d} (B -> C)).

Contrast with ({c} A) -> ({d} B) -> C which is a curried pure function over argument types

that can capture c and d, respectively.

Note. Like other object-functional languages, Scala distinguishes between functions and methods

(which are defined using def). Functions are values whereas methods represent pieces of code that

logically form part of the enclosing object. The type system treats method signatures and function

types separately: A function type is treated as an object type with a single apply method. Methods

are converted to functions by eta expansion, i.e. the unapplied method reference m is transparently

converted to the function value x => m(x).
Since methods are not values in Scala, they never capture anything directly. Therefore, the

distinctions between pure vs impure function types do not apply to methods. The capabilities

captured by a method would show up in the object closure of which the method forms part.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 7

2.3 Capture Checking of Closures
If a closure refers to capabilities in its body, it captures these capabilities in its type. For instance,

consider:

def test(fs: FileSystem): {fs} String -> Unit =

(x: String) => Logger(fs).log(x)

Here, the body of test is a lambda that refers to the capability fs, which means that fs is retained

in the lambda. Consequently, the type of the lambda is {fs} String -> Unit.

Note. On the term level, function values are always written with => (or ?=> for context functions).
There is no syntactic distinction for pure vs impure function values. The distinction is only made

in their types.

A closure also captures all capabilities that are captured by the functions it calls. For instance, in

def test(fs: FileSystem) =

def f() = (x: String) => Logger(fs).log(x)

def g() = f()

g

the result of test has type {fs} String -> Unit even though function g itself does not refer to

fs.

2.4 Subtyping and Subcapturing
Capturing influences subtyping. As usual we write 𝑇1 <: 𝑇2 to express that the type 𝑇1 is a subtype

of the type 𝑇2, or equivalently, that 𝑇1 conforms to 𝑇2. An analogous subcapturing relation applies

to capture sets. If 𝐶1 and 𝐶2 are capture sets, we write 𝐶1 <: 𝐶2 to express that 𝐶1 is covered by 𝐶2,

or, swapping the operands, that 𝐶2 covers 𝐶1.

Subtyping extends as follows to capturing types:

• Pure types are subtypes of capturing types. That is, 𝑇 <: 𝐶𝑇 , for any type 𝑇 , capturing set 𝐶 .

• For capturing types, smaller capture sets produce subtypes: 𝐶1𝑇1 <: 𝐶2𝑇2 if 𝐶1 <: 𝐶2 and

𝑇1 <: 𝑇2.

A subcapturing relation 𝐶1 <: 𝐶2 holds if 𝐶2 accounts for every element 𝑐 in 𝐶1. This means one of

the following two conditions must be true:

• 𝑐 ∈ 𝐶2,

• 𝑐’s type has capturing set 𝐶 and 𝐶2 accounts for every element of 𝐶 (that is, 𝐶 <: 𝐶2).

Example. Given

fs: {*} FileSystem

ct: {*} CanThrow[Exception]

l : {fs} Logger

we have

{l} <: {fs} <: {*}
{fs} <: {fs, ct} <: {*}
{ct} <: {fs, ct} <: {*}

The set consisting of the root capability {*} covers every other capture set. This is a consequence

of the fact that, ultimately, every capability is created from *.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

8 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

2.5 Capture Tunneling
Next, we discuss how type-polymorphism interacts with reasoning about capture. To this end,

consider the following simple definition of a Pair class:

class Pair[+A, +B](x: A, y: B):

def fst: A = x

def snd: B = y

What happens if we pass arguments to the constructor of Pair that capture capabilities?

def x: {ct} Int -> String

def y: {fs} Logger

def p = Pair(x, y)

Here the arguments x and y close over different capabilities ct and fs, which are assumed to be in

scope. So what should the type of p be? Maybe surprisingly, it will be typed as:

def p: {} Pair[{ct} Int -> String , {fs} Logger] = Pair(x, y)

That is, the outer capture set is empty and does neither mention ct nor fs, even though the value

Pair(x, y) does capture them. So why don’t they show up in its type at the outside?

While assigning p the capture set {ct, fs}would be sound, types would quickly grow inaccurate

and unbearably verbose. To remedy this, CC<:□ performs capture tunneling. Once a type variable

is instantiated to a capturing type, the capture is not propagated beyond this point. On the other

hand, if the type variable is instantiated again on access, the capture information “pops out” again.

Even though p is technically untracked because its capture set is empty, writing p.fst would
record a reference to the captured capability ct. So if this access was put in a closure, the capability

would again form part of the outer capture set. E.g.,

() => p.fst : {ct} () -> {ct} Int -> String

In other words, references to capabilities “tunnel through” generic instantiations—from creation to

access; they do not affect the capture set of the enclosing generic data constructor applications. As

mentioned above, this principle plays an important part in making capture checking concise and

practical. To illustrate, let us take a look at the following example:

def mapFirst[A,B,C](p: Pair[A,B], f: A => C): Pair[C,B] =

Pair(f(p.x), p.y)

Relying on capture tunneling, neither the types of the parameters to mapFirst, nor its result type
need to be annotated with capture sets. Intuitively, the capture sets do not matter for mapFirst,
since parametricity forbids it from inspecting the actual values inside the pairs. If not for capture

tunneling, we would need to annotate p as {*} Pair[A,B], since both A and B and through them,

p can capture arbitrary capabilities. In turn, this means that for the same reason, without tunneling

we would also have {*} Pair[C,B] as the result type. This is of course unacceptably inaccurate.

Section 3 describes the foundational theory on which capture checking is based. It makes

tunneling explicit through so-called box and unbox operations. Boxing hides a capture set and

unboxing recovers it. The capture checker inserts virtual box and unbox operations based on actual

and expected types similar to the way the type checker inserts implicit conversions. Boxing and

unboxing has no runtime effect, so the insertion of these operations is only simulated, but not kept

in the generated code.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 9

2.6 Escape Checking
Following the principle of object capabilities, the universal capability * should conceptually only

be available as a parameter to the main program. Indeed, if it was available everywhere, capability

checking would be undermined since one could mint new capabilities at will. In line with this

reasoning, some capture sets are restricted and must not contain the universal capability.

Specifically, if a capturing type is an instance of a type variable, that capturing type is not allowed

to carry the universal capability {*}.2 There is a connection to tunneling here. The capture set of a

type has to be present in the environment when a type is instantiated from a type variable. But * is

not itself available as a global entity in the environment. Hence, this should result in an error.

Using this principle, we can show why the introductory example in Section 1 reported an error.

To recall, function usingFile was declared like this:

def usingFile[T](name: String , op: ({*} FileOutputStream) => T): T = ...

The capture checker rejects the illegal definition of later

val later = usingFile("out",

f => (y: Int) => xs.foreach(x => f.write(x + y)))

with the following error message

| val later = usingFile("out", f => (y: Int) => xs.foreach(x => f.write(x + y)))
| ^^
|The expression's type {*} Int -> Unit is not allowed to capture the root capability `*`
|This usually means that a capability persists longer than its allowed lifetime.

This error message was produced by the following reasoning steps:

• Parameter f has type {*} FileOutputStream, which makes it a capability.

• Therefore, the type of the expression

(y: Int) => xs.foreach(x => f.write(x + y))

is {f} Int -> Unit.
• Consequently, we assign the whole closure passed to usingFile the dependent function

type (f: {*} FileOutputStream) -> {f} Int -> Unit.
• The expected type of the closure is a simple, parametric, impure function type

({*} FileOutputStream) => T, for some instantiation of the type variable T.
• We cannot instantiate T with {f} Int -> Unit since the expected function type is non-

dependent. The smallest supertype that matches the expected type is thus

({*} FileOutputStream) => {*} Int -> Unit.
• Hence, the type variable T is instantiated to {*} Int -> Unit, which is not allowed and

causes the error.

2.7 Escape Checking of Mutable Variables
Another way one could try to undermine capture checking would be to assign a closure with a

local capability to a global variable. For instance like this
3
:

var loophole: {*} () -> Unit = () => ()

usingFile("tryEscape", f =>

loophole = () => f.write (0)

2
This follows since type variables range over pure types, so * must appear under a box. But rule (Box) in Figure 3 restricts

variables in boxed capture sets to be declared in the enclosing environment, which does not hold for *.
3
Mutable variables are not covered by the formal treatment of CC<:□ . We include the discussion anyway to show that

escape checking can be generalized to scope extrusions separate from result values.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

10 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

}

loophole ()

We prevent such scope extrusions by imposing the restriction that mutable variables cannot have

types with universal capture sets.

One also needs to prevent returning or assigning a closure with a local capability in an argument

of a parametric type. For instance, here is a slightly more refined attack:

val sneaky = usingLogFile { f => Pair (() => f.write(0), 1) }

sneaky.fst()

At the point where the Pair is created, the capture set of the first argument is {f}, which is OK. But

at the point of use, it is {*}: since f is no longer in scope we need to widen the type to a supertype

that does not mention it (c.f. the explanation of avoidance in Section 3.3). This causes an error,

again, as the universal capability is not permitted to be in the unboxed form of the return type (c.f.

the precondition of (Unbox) in Figure 3).

Variable 𝑥,𝑦, 𝑧

Type Variable 𝑋,𝑌, 𝑍

Value 𝑣,𝑤 ::= 𝜆(𝑥 : 𝑇) 𝑡 | 𝜆[𝑋 <: 𝑆]𝑡 | □ 𝑥
Answer 𝑎 ::= 𝑣 | 𝑥

Term 𝑠, 𝑡 ::= 𝑎 | 𝑥 𝑦 | 𝑥 [𝑆] | let𝑥 = 𝑠 in 𝑡 | 𝐶 � 𝑥

Shape Type 𝑆 ::= 𝑋 | ⊤ | ∀(𝑥 : 𝑈)𝑇 | ∀[𝑋 <: 𝑆]𝑇 | □ 𝑇

Type 𝑇,𝑈 ::= 𝑆 | 𝐶 𝑆

Capture Set 𝐶 ::= {𝑥1, . . . , 𝑥𝑛}

Fig. 2. Syntax of System CC<:□

3 THE CC<:□ CALCULUS
The syntax of CC<:□ is given in Figure 2. In short, it describes a dependently typed variant of

System F<: in monadic normal form (MNF) with capturing types and boxes.

Dependently typed: Types may refer to term variables in their capture sets, which introduces

a simple form of (variable-)dependent typing. As a consequence, a function’s result type may now

refer to the parameter in its capture set. To be able to express this, the general form of a function

type ∀(𝑥 : 𝑈)𝑇 explicitly names the parameter 𝑥 . We retain the non-dependent syntax 𝑈 → 𝑇 for

function types as an abbreviation if the parameter is not mentioned in the result type 𝑇 .

Dependent typing is attractive since it means that we can refer to object capabilities directly in

types, instead of having to go through auxiliary region or effect variables. We thus avoid clutter

related to quantification of such auxiliary variables.

Monadic normal form: The term structure of CC<:□ requires operands of applications to be

variables. This does not constitute a loss of expressiveness, since a general application 𝑡1 𝑡2 can

be expressed as let𝑥1 = 𝑡1 in let𝑥2 = 𝑡2 in𝑥1 𝑥2. This syntactic convention has advantages for

variable-dependent typing. In particular, typing function application in such a calculus requires

substituting actual arguments for formal parameters. If arguments are restricted to be variables,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 11

these substitutions are just variable/variable renamings, which keep the general structure of a type.

If arguments were arbitrary terms, such a substitution would in general map a type to something

that was not syntactically a type. Monadic normal form [Hatcliff and Danvy 1994] is a slight

generalization of the better-known A-normal form (ANF) [Sabry and Felleisen 1993] to allow

arbitrary nesting of let expressions. We use a here a variant of MNF where applications are over

variables instead of values.

A similar restriction to MNF was employed in DOT [Amin et al. 2016], the foundation of Scala’s

object model, for the same reasons. The restriction is invisible to source programs, which can still

be in direct style. For instance, the Scala compiler selectively translates a source expression in

direct style to MNF if a non-variable argument is passed to a dependent function. Type checking

then takes place on the translated version.

Capturing Types: The types inCC<:□ are stratified as shape types 𝑆 and regular types𝑇 . Regular

types can be shape types or capturing types {𝑥1, . . . , 𝑥𝑛} 𝑆 . Shape types are made up from the usual

type constructors in F<: plus boxes. We freely use shape types in place of types, assuming the

equivalence {} 𝑆 ≡ 𝑆 .

Boxes: Type variables 𝑋 can be bounded or instantiated only with shape types, not with regular

types. To make up for this restriction, a regular type 𝑇 can be encapsulated in a shape type by

prefixing it with a box operator □ 𝑇 . On the term level, □ 𝑥 injects a variable into a boxed type.

A variable of boxed type is unboxed using the syntax 𝐶 � 𝑥 where 𝐶 is the capture set of the

underlying type of 𝑥 . We have seen in Section 2 that boxing and unboxing allow a kind of capability

tunneling by omitting capabilities when values of parametric types are constructed and charging

these capabilities instead at use sites.

System F<: : We base CC<:□ on a standard type system that supports the two principal forms of

polymorphism, subtyping and universal.

Subtyping comes naturally with capabilities in capture sets. First, a type capturing fewer capa-

bilities is naturally a subtype of a type capturing more capabilities, and pure types are naturally

subtypes of capturing types. Second, if capability 𝑥 is derived from capability𝑦, then a type capturing

𝑥 can be seen as a subtype of the same type but capturing 𝑦.

Universal polymorphism poses specific challenges when capture sets are introduced which are

addressed in CC<:□ by the stratification into shape types and regular types and the box/unbox

operations that map between them.

Note that the only form of term dependencies in CC<:□ relate to capture sets in types. If we omit

capture sets and boxes, the calculus is equivalent to standard F<: , despite the different syntax. We

highlight in the figures the essential additions wrt F<: with a grey background.

CC<:□ is intentionally meant to be a small and canonical core calculus that does not cover

higher-level features such as records, modules, objects, or classes. While these features are certainly

important, their specific details are also somewhat more varied and arbitrary than the core that’s

covered. Many different systems can be built on CC<:□ , extending it with various constructs to

organize code and data on higher-levels.

Capture Sets. Capture sets𝐶 are finite sets of variables of the form {𝑥1, . . . , 𝑥𝑛}. We understand

∗ to be a special variable that can appear in capture sets, but cannot be bound in Γ. We write 𝐶 \ 𝑥
as a shorthand for 𝐶 \ {𝑥}.

Capture sets of closures are determined using a function cv over terms.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

12 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Definition (Captured Variables). The captured variables cv(𝑡) of a term 𝑡 are given as follows.

cv(𝜆(𝑥 : 𝑇)𝑡) = cv(𝑡)\𝑥
cv(𝜆[𝑋 <: 𝑆]𝑡) = cv(𝑡)
cv(𝑥) = {𝑥}
cv(let𝑥 = 𝑣 in 𝑡) = cv(𝑡) if𝑥 ∉ cv(𝑡)
cv(let𝑥 = 𝑠 in 𝑡) = cv(𝑠) ∪ cv(𝑡)\𝑥
cv(𝑥 𝑦) = {𝑥,𝑦}
cv(𝑥 [𝑆]) = {𝑥}
cv(□ 𝑥) = {}
cv(𝐶 � 𝑥) = 𝐶 ∪ {𝑥}

The definitions of captured and free variables of a term are very similar, with the following three

differences:

(1) Boxing a term □ 𝑥 obscures 𝑥 as a captured variable.

(2) Dually, unboxing a term 𝐶 � 𝑥 counts the variables in 𝐶 as captured.

(3) In an evaluated let binding let𝑥 = 𝑣 in 𝑡 , the captured variables of 𝑣 are counted only if 𝑥 is a

captured variable of 𝑡 .

The first two rules encapsulate the essence of box-unbox pairs: Boxing a term obscures its captured

variable and makes it necessary to unbox the term before its value can be accessed; unboxing a

term presents variables that were obscured when boxing.

Figure 3 presents typing and evaluation rules for CC<:□ . There are four main sections on subcap-

turing, subtyping, typing, and evaluation. These are explained in the following.

3.1 Subcapturing
Subcapturing establishes a preorder relation on capture sets that gets propagated to types. Smaller

capture sets with respect to subcapturing lead to smaller types with respect to subtyping.

The relation is defined by three rules. The first two rules (sc-set) and (sc-elem) establish that

subsets imply subcaptures. That is, smaller capture sets subcapture larger ones. The last rule (sc-

var) is the most interesting since it reflects an essential property of object capabilities. It states

that a variable 𝑥 of capturing type 𝐶 𝑆 generates a capture set {𝑥} that subcaptures the capabilities
𝐶 with which the variable was declared. In a sense, (sc-var) states a monotonicity property: a

capability refines the capabilities from which it is created. In particular, capabilities cannot be

created from nothing. Every capability needs to be derived from some more sweeping capabilities

which it captures in its type.

The rule also validates our definition of capabilities as variables with non-empty capture sets in

their types. Indeed, if a variable is defined as 𝑥 : {} 𝑆 , then by (sc-var) we have {𝑥} <: {}. This
means that the variable can be disregarded in the formation of cv, for instance. Even if 𝑥 occurs in

a term, a capture set with 𝑥 in it is equivalent (with respect to mutual subcapturing) to a capture

set without. Hence, 𝑥 can safely be dropped without affecting subtyping or typing.

Rules (sc-set) and (sc-elem) mean that if set 𝐶 is a subset of 𝐶′
, we also have 𝐶 <: 𝐶′

. But the

reverse is not true. For instance, with (sc-var) we can derive the following relationship assuming

lambda-bound variables 𝑥 and 𝑦:

𝑥 : {∗} ⊤, 𝑦 : {𝑥} ⊤ ⊢ {𝑦} <: {𝑥}

Intuitively this makes sense, as𝑦 can capture no more than 𝑥 . However, we cannot derive {𝑥} <: {𝑦},
since arguments passed for 𝑦 may in fact capture less than 𝑥 , e.g. they could be pure.

While there are no subcapturing rules for top or bottom capture sets, we can still establish:

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 13

Subcapturing Γ ⊢ 𝐶 <: 𝐶

𝑥 ∈ 𝐶

Γ ⊢ {𝑥} <: 𝐶
(sc-elem)

Γ ⊢ {𝑥1} <: 𝐶 . . . Γ ⊢ {𝑥𝑛} <: 𝐶

Γ ⊢ {𝑥1, . . . , 𝑥𝑛} <: 𝐶
(sc-set)

𝑥 : 𝐶′ 𝑆 ∈ Γ Γ ⊢ 𝐶′ <: 𝐶

Γ ⊢ {𝑥} <: 𝐶
(sc-var)

Subtyping Γ ⊢ 𝑇 <: 𝑇

Γ ⊢ 𝑇 <: 𝑇 (refl)

𝑋 <: 𝑆 ∈ Γ

Γ ⊢ 𝑋 <: 𝑆
(tvar)

Γ ⊢ 𝑈2 <: 𝑈1 Γ, 𝑥 : 𝑈2 ⊢ 𝑇1 <: 𝑇2

Γ ⊢ ∀(𝑥 : 𝑈1)𝑇1 <: ∀(𝑥 : 𝑈2)𝑇2
(fun)

Γ ⊢ 𝐶1 <: 𝐶2 Γ ⊢ 𝑆1 <: 𝑆2

Γ ⊢ 𝐶1 𝑆1 <: 𝐶2 𝑆2
(capt)

Γ ⊢ 𝑇1 <: 𝑇2 Γ ⊢ 𝑇2 <: 𝑇3 Γ ⊢ 𝑇2 wf

Γ ⊢ 𝑇1 <: 𝑇3
(trans)

Γ ⊢ 𝑆 <: ⊤ (top)

Γ ⊢ 𝑆2 <: 𝑆1 Γ, 𝑋 <: 𝑆2 ⊢ 𝑇1 <: 𝑇2

Γ ⊢ ∀[𝑋 <: 𝑆1]𝑇1 <: ∀[𝑋 <: 𝑆2]𝑇2
(tfun)

Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ □ 𝑇1 <: □ 𝑇2
(boxed)

Typing Γ ⊢ 𝑡 : 𝑇

𝑥 : 𝐶 𝑆 ∈ Γ

Γ ⊢ 𝑥 : {𝑥} 𝑆
(var)

Γ, 𝑥 : 𝑈 ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑈 wf

Γ ⊢ 𝜆(𝑥 : 𝑈)𝑡 : cv(𝑡)\𝑥 ∀(𝑥 : 𝑈)𝑇
(abs)

Γ ⊢ 𝑥 : 𝐶 ∀(𝑧 : 𝑈)𝑇 Γ ⊢ 𝑦 : 𝑈

Γ ⊢ 𝑥 𝑦 : [𝑧 := 𝑦]𝑇
(app)

Γ ⊢ 𝑥 : 𝐶 𝑆 𝐶 ⊆ dom(Γ)

Γ ⊢ □ 𝑥 : □ 𝐶 𝑆
(box)

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑇 <: 𝑈 Γ ⊢ 𝑈 wf

Γ ⊢ 𝑡 : 𝑈
(sub)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑆 wf

Γ ⊢ 𝜆[𝑋 <: 𝑆]𝑡 : cv(𝑡) ∀[𝑋 <: 𝑆]𝑇
(tabs)

Γ ⊢ 𝑥 : 𝐶 ∀[𝑋 <: 𝑆]𝑇
Γ ⊢ 𝑥 [𝑆] : [𝑋 := 𝑆]𝑇

(tapp)

Γ ⊢ 𝑥 : □ 𝐶 𝑆 𝐶 ⊆ dom(Γ)

Γ ⊢ 𝐶 � 𝑥 : 𝐶 𝑆
(unbox)

Γ ⊢ 𝑠 : 𝑇 Γ, 𝑥 : 𝑇 ⊢ 𝑡 : 𝑈 𝑥 ∉ fv(𝑈)
Γ ⊢ let𝑥 = 𝑠 in 𝑡 : 𝑈

(let)

Evaluation Γ ⊢ 𝑡 −→ 𝑡 ′

𝜎 [𝑒 [𝑥 𝑦]] −→ 𝜎 [𝑒 [[𝑧 := 𝑦]𝑡]] if 𝜎 (𝑥) = 𝜆(𝑧 : 𝑇)𝑡 (apply)

𝜎 [𝑒 [𝑥 [𝑆]]] −→ 𝜎 [𝑒 [[𝑋 := 𝑆]𝑡]] if 𝜎 (𝑥) = 𝜆[𝑋 <: 𝑆 ′]𝑡 (tapply)

𝜎 [𝑒 [𝐶 � 𝑥]] −→ 𝜎 [𝑒 [𝑦]] if 𝜎 (𝑥) = □ 𝑦 (open)

𝜎 [𝑒 [let𝑥 = 𝑦 in 𝑡]] −→ 𝜎 [𝑒 [[𝑥 := 𝑦]𝑡]] (rename)

𝜎 [𝑒 [let𝑥 = 𝑣 in 𝑡]] −→ 𝜎 [let𝑥 = 𝑣 in 𝑒 [𝑡]] if 𝑒 ≠ [] (lift)

where Store context 𝜎 ::= [] | let𝑥 = 𝑣 in𝜎
Eval context 𝑒 ::= [] | let𝑥 = 𝑒 in 𝑡

Fig. 3. Typing and Evaluation Rules of System CC<:□

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

14 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Proposition 3.1. If 𝐶 is well-formed in Γ, then Γ ⊢ {} <: 𝐶 <: {∗}.

A proof is enclosed in the appendix.

Proposition 3.2. The subcapturing relation Γ ⊢ _ <: _ is a preorder.

Proof. We can show that transitivity and reflexivity are admissible. □

3.2 Subtyping
The subtyping rules of CC<:□ are very similar to those of System F<: , with the only significant

addition being the rules for capturing and boxed types. Note that as 𝑆 ≡ {} 𝑆 , both transitivity

and reflexivity apply to shape types as well. (capt) allows comparing types that have capture sets,

where smaller capture sets lead to smaller types. (boxed) propagates subtyping relations between

types to their boxed versions.

3.3 Typing
Typing rules are again close to System F<: , with differences to account for capture sets.

Rule (var) is the basis for capability refinements. If 𝑥 is declared with type 𝐶 𝑆 , then the type

of 𝑥 has {𝑥} as its capture set instead of 𝐶 . The capturing set {𝑥} is more specific than 𝐶 , in the

subcapturing sense. Therefore, we can recover the capture set 𝐶 through subsumption.

Rules (abs) and (tabs) augment the abstraction’s type with a capture set that contains the

captured variables of the term. Through subsumption and rule (sc-var), untracked variables can

immediately be removed from this set.

The (app) rule substitutes references to the function parameter with the argument to the function.

This is possible since arguments are guaranteed to be variables. The function’s capture set 𝐶 is

disregarded, reflecting the principle that the function closure is consumed by the application. Rule

(tapp) is analogous.

Aside: A more conventional version of (tapp) would be

Γ ⊢ 𝑥 : 𝐶 ∀[𝑋 <: 𝑆 ′]𝑇 Γ ⊢ 𝑆 <: 𝑆 ′

Γ ⊢ 𝑥 [𝑆] : [𝑋 := 𝑆]𝑇
(tapp’)

That formulation is equivalent to (tapp) in the sense that either rule is derivable from the other,

using subsumption and contravariance of type bounds.

Rules (box) and (unbox) map between boxed and unboxed types. They require all members of

the capture set under the box to be bound in the environment Γ. Consequently, while one can
create a boxed type with {∗} as its capture set through subsumption, one cannot unbox values of

this type. This property is fundamental for ensuring scoping of capabilities.

Avoidance. As is usual in dependent type systems, Rule (let) has as a side condition that the

bound variable 𝑥 does not appear free in the result type 𝑈 . This so called avoidance property is

usually attained through subsumption. For instance consider an enclosing capability 𝑐 : 𝑇1 and the

term

let𝑥 = 𝜆(𝑦 : 𝑇2).𝑐 in 𝜆(𝑧 : {𝑥}𝑇3).𝑧
The most specific type of 𝑥 is {𝑐} (𝑇2 → 𝑇1) and the most specific type of the body of the let is

∀(𝑧 : {𝑥}𝑇3).{𝑧}𝑇3. We need to find a supertype of the latter type that does not mention 𝑥 . It turns

out the most specific such type is 𝑇3 → {𝑐}𝑇3, so that is a possible type of the let, and it should be

the inferred type.

In general there is always a most specific avoiding type for a (let):

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 15

Proposition 3.3. Consider a term let𝑥 = 𝑠 in 𝑡 in an environment Γ such that Γ ⊢ 𝑠 : 𝑇1 and

Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇2. Then there exists a minimal (wrt <:) type 𝑇3 such that 𝑇2 <: 𝑇3 and 𝑥 ∉ fv(𝑇3)

Proof. Without loss of generality, assume that Γ ⊢ 𝑠 : 𝐶𝑠 𝑈 is the most specific typing for 𝑠 in Γ
and Γ, 𝑥 : 𝐶𝑠 𝑈 ⊢ 𝑡 : 𝑇 is the most specific typing for 𝑡 in the context of the body of the let, namely

Γ, 𝑥 : 𝐶𝑠 𝑈 . Let 𝑇 ′
be constructed from 𝑇 by replacing 𝑥 with 𝐶𝑠 in covariant capture set positions

and by replacing 𝑥 with the empty set in contravariant capture set positions. Then for every type

𝑉 avoiding 𝑥 such that Γ, 𝑥 : 𝐶𝑠 𝑆 ⊢ 𝑇 <: 𝑉 , Γ ⊢ 𝑇 ′ <: 𝑉 . This is shown by a straightforward

structual induction, which we give in the appendix in Section A.61. □

3.4 Well-formedness
Well-formedness Γ ⊢ 𝑇 wf is equivalent to well-formedness in System F<: in that free variables in

types and terms must be defined in the environment, except that capturing types may mention the

universal capability ∗ in their capture sets:

Γ ⊢ 𝑆 wf 𝐶 ⊆ dom(Γ) ∪ {∗}
Γ ⊢ 𝐶 𝑆 wf

(capt-wf)

3.5 Evaluation
Evaluation is defined by a small-step reduction relation. This relation is quite different from usual

reduction via term substitution. Substituting values for variables would break the monadic normal

form of a program. Instead, we reduce the right hand sides of let-bound variables in place and

lookup the bindings in the environment of a redex.

Every redex is embedded in an outer store context and an inner evaluation context. These represent

orthogonal decompositions of let bindings. An evaluation context 𝑒 always puts the focus [] on the

right-hand side 𝑡1 of a let binding let𝑥 = 𝑡1 in 𝑡2. By contrast, a store context 𝜎 puts the focus on

the following term 𝑡2 and requires that 𝑡1 is evaluated.

The first three rules — (apply), (tapply), (open) — rewrite simple redexes: applications, type

applications and unboxings. Each of these rules looks up a variable in the enclosing store and

proceeds based on the value that was found.

The last two rules are administrative in nature. They both deal with evaluated lets in redex

position. If the right hand side of the let is a variable, the let gets expanded out by renaming the

bound variable using (rename). If it is a value, the let gets lifted out into the store context using

(lift).

Proposition 3.4. Evaluation is deterministic. For any term 𝑡1 there is at most one term 𝑡2 such that

𝑡1 −→ 𝑡2.

Proof. By a straightforward inspection of the reduction rules and definitions of contexts.

4 METATHEORY
We prove that CC<:□ is sound through the standard progress and preservation theorems. The proofs

for all the lemmas and theorems stated in this section are provided in the appendix.

In order to prove both progress and preservation, we need technical lemmas that allow manipula-

tion of typing judgements for terms under store and evaluation contexts. To state these lemmas, we

first need to define what it means for typing and store contexts to match, which we do in Figure 4.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

16 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Γ, 𝑥 : 𝑇 ⊢ 𝜎 ∼ Δ
Γ ⊢ 𝑣 : 𝑇 𝑥 ∉ fv(𝑇)

Γ ⊢ let𝑥 = 𝑣 in𝜎 ∼ 𝑥 : 𝑇,Δ

Γ ⊢ [] ∼ ·

Fig. 4. Matching environment Γ ⊢ 𝜎 ∼ Δ

Having Γ ⊢ 𝜎 ∼ Δ lets us know that 𝜎 is well-typed in Γ if we use Δ as the types of the bindings.

Using this definition, we can state the following four lemmas, which also illustrate how the store

and evaluation contexts interact with typing:

Definition 4.1 (Evaluation context typing (Γ ⊢ 𝑒 : 𝑈 ⇒ 𝑇)). We say that Γ types an evaluation

context 𝑒 as𝑈 ⇒ 𝑇 if Γ, 𝑥 : 𝑈 ⊢ 𝑒 [𝑥] : 𝑇 .
Lemma 4.2 (Evaluation context typing inversion).

Γ ⊢ 𝑒 [𝑠] : 𝑇 implies that for some𝑈 we have Γ ⊢ 𝑒 : 𝑈 ⇒ 𝑇 and Γ ⊢ 𝑠 : 𝑈 .

Lemma 4.3 (Evaluation context reification).

If both Γ ⊢ 𝑒 : 𝑈 ⇒ 𝑇 and Γ ⊢ 𝑠 : 𝑈 , then Γ ⊢ 𝑒 [𝑠] : 𝑇 .
Lemma 4.4 (Store context typing inversion).

Γ ⊢ 𝜎 [𝑡] : 𝑇 implies that for some Δ we have Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝑡 : 𝑇 .

Lemma 4.5 (Store context reification).

If both Γ,Δ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝜎 ∼ Δ, then also Γ ⊢ 𝜎 [𝑡] : 𝑇 .
We can now proceed to our main theorems; their statements differ slightly from System F<: ,

as we need to account for our monadic normal form. Our preservation theorem captures that the

important type to preserve is the one assigned to the term under the store. It is stated as follows:

Theorem 4.6 (Preservation). If we have Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝑡 : 𝑇 , then 𝜎 [𝑡] −→ 𝜎 [𝑡 ′]
implies that Γ,Δ ⊢ 𝑡 ′ : 𝑇 .

To neatly state the progress theorem, we first need to define canonical store-plug splits, which

simply formally express that the store context wrapping a term is as large as possible:

Definition 4.7 (Canonical store-plug split). We say that a term of the form 𝜎 [𝑡] is a canonical
split (of the entire term into store context 𝜎 and the plug 𝑡) if 𝑡 is not of the form let𝑥 : 𝑇 = 𝑣 in 𝑡 ′.
With this definition, we can now state the progress theorem:

Theorem 4.8 (Progress). If ⊢ 𝜎 [𝑒 [𝑡]] : 𝑇 and 𝜎 [𝑒 [𝑡]] is a canonical store-plug split, then
either 𝑒 [𝑡] = 𝑎, or there exists 𝜎 [𝑡 ′] such that 𝜎 [𝑒 [𝑡]] −→ 𝜎 [𝑡 ′].
The lemmas needed to prove progress and preservation are for the most part standard. As our cal-

culus is term-dependent, we also need to account for term substitution affecting both environments

and types, not only terms. For instance, the lemma stating that term substitution preserves typing

is expressed as follows:

Lemma 4.9 (Term substitution preserves typing).

If Γ, 𝑥 : 𝑈 ,Δ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝑦 : 𝑈 , then Γ, [𝑥 := 𝑦]Δ ⊢ [𝑥 := 𝑦]𝑡 : [𝑥 := 𝑦]𝑇 .
In this statement, we can also see that we only consider substituting one term variable for

another, due to MNF. Using MNF affects other parts of the proof as well – in addition to typical

canonical forms lemmas, we also need to show that looking up the value bound to a variable in a

store preserves the types we can assign to the variable:

Lemma 4.10 (Variable lookup inversion).

If we have both Γ ⊢ 𝜎 ∼ Δ and 𝑥 : 𝐶 𝑅 ∈ Γ,Δ, then 𝜎 (𝑥) = 𝑣 implies that Γ,Δ ⊢ 𝑣 : 𝐶 𝑅.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 17

Capture sets and captured variables. Our typing rules use cv to calculate the capture set that should

be assigned to terms. With that in mind, we can ask the question: what is the exact relationship

between captured variables and capture sets we use to type the terms?

Because of subcapturing, this relationship is not as obvious as it might seem. For fully evaluated

terms (of the form 𝜎 [𝑎]), their captured variables are the most precise capture set they can be

assigned. The following lemma states this formally:

Lemma 4.11 (Capture prediction for answers). If Γ ⊢ 𝜎 [𝑎] : 𝐶 𝑆 , then Γ ⊢ cv(𝜎 [𝑎]) <: 𝐶 .

If we start with an unreduced term 𝜎 [𝑡], then the situation becomes more complex. It can mention

and use capabilities that will not be reflected in the capture set at all – for instance, if 𝑡 = 𝑥 𝑦, the

capture set of 𝑥 is irrelevant to the type assigned to 𝑡 by (app). However, if 𝜎 [𝑡] reduces fully to a

term of the form 𝜎 [𝜎 ′ [𝑎]], the captured variables of 𝜎 ′ [𝑎] will correspond to capture sets we could

assign to 𝑡 .

In other words, the capture sets we assign to unevaluated terms under a store context predict

variables that will be captured by the answer those terms reduce to. Formally we can express this

as follows:

Lemma 4.12 (Capture prediction for terms).

Let ⊢ 𝜎 ∼ Δ and Δ ⊢ 𝑡 : 𝐶 𝑆 . Then 𝜎 [𝑡] −→∗ 𝜎 [𝜎 ′ [𝑎]] implies that Δ ⊢ cv(𝜎 ′ [𝑎]) <: 𝐶 .

4.1 Correctness of boxing
Boxing capabilities allows temporarily hiding them from capture sets. Given that we can do so, one

may be inclined to ask: what is the correctness criterion for our typing rules for box and unbox

forms?

Intuitively, we should not be able to “smuggle in” a capability by using boxes: all the capabilities

of a term should be somehow accounted for. A basic criterion our typing rules should satisfy is

that a term that boxes and immediately unboxes a capability should have a cv at least as wide than

that of the capability, i.e. a cv that accounts for the capability. Formally we can state this property

as follows:

Proposition 4.13. Let ⊢ 𝜎 ⊢ Δ and let 𝑡 = let𝑦 = □ 𝑥 in𝐶 � 𝑦 such that for some 𝑒,𝑇 , we have

Δ ⊢ 𝜎 [𝑒 [𝑡]] : 𝑇 . Then we also have:

Δ ⊢ {𝑥} <: 𝐶 = cv(𝑡)

It is straightforward to verify that this holds based on the progress theorem and by induction

on the typing derivation. Ideally, our correctness criterion would speak about arbitrary terms, by

characterising their captured variables alongside reduction paths. Since this clearly doesn’t make

sense for closed terms, we will need one additional definition: a way of introducing well-behaved

capabilities. A platform Ψ is an outer portion of the store which formally represents primitive

capabilities. It is defined as follows:

Ψ ::= let𝑥 = 𝑣 inΨ if fv(𝑣) = {}
| []

Since a platform Ψ is meant to introduce primitive capabilities, it doesn’t make sense to type them

with any other capture set than {∗}. The following definition captures this idea:

Definition (Well-typed program). We say that a term Ψ[𝑡] is a well-typed program if for some

typing context Δ such that ⊢ Ψ ∼ Δ we have Δ ⊢ 𝑡 : 𝑇 , and for all 𝑥 ∈ dom(Ψ) we have 𝑥 : {∗} 𝑆 ∈ Δ.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

18 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

The capabilities introduced by the platform of a well-typed program are well-behaved in the

sense that their values cannot reference any other variable, and their capture sets are {∗}. Given cv

and platform, we can state our desired lemma as follows:

Lemma 4.14 (Program authority preservation). Let Ψ[𝑡] be a well-typed program such that

Ψ[𝑡] −→ Ψ[𝑡 ′]. Then cv(𝑡 ′) is a subset of cv(𝑡).
The name of this lemma hints at the property we want to demonstrate next, which offers

another perspective at what it means for boxes to be correctly typed. This property will capture

the connection between the cv of a term and the capabilities it may use during evaluation. We

make intuitive usage of this connection when we say, for instance, that a function 𝑓 typed as

{}Unit → Unit cannot perform any effects when called. Formally, it cannot do so because when

we reduce a term of the form 𝑓 𝑥 , based on (abs) we know it will be replaced by some term such

that cv(𝑡) = {}. Here is where we make an intuitive jump: since cv(𝑡) is empty and we do not pass

anything to 𝑡 , it should not use any capabilities during evaluation.

To state this formally, first we need to define which capabilities are used during reduction. All

formal capabilities are abstractions, so a natural definition is to say that a capability 𝑥 was used

if it was applied, i.e. if a term of the form 𝑥 𝑦 was reduced. To speak about this, we will define

used(𝑡 −→ 𝑠) as function from reduction derivations to sets of variables, as follows:

used(𝑡1 −→ 𝑡2 −→ · · · −→ 𝑡𝑛) = used(𝑡1 −→ 𝑡2) ∪ used(𝑡2 −→ · · · −→ 𝑡𝑛)
used(𝜎 [𝑒 [𝑥 𝑦]] −→ 𝜎 [𝑡]) = {𝑥}
used(𝜎 [𝑒 [𝑥 [𝑇]]] −→ 𝜎 [𝑡]) = {𝑥}
used(𝑡1 −→ 𝑡2) = {} (otherwise)

The last case applies to rules (OPEN), (RENAME), (LIFT).

Now, let us consider how exactly the cv of a term is connected to the capabilities it will use

during evaluation. If we disregard boxes, then clearly a term 𝑡 can only use a capability 𝑥 if it is

free in 𝑡 , which also means that it is in cv(𝑡). However, boxing a capability hides it from the cv. If

we disregard unbox forms, this is again not a problem: a capability under a box cannot be used

unless the box is opened first. Now, if we consider unbox forms 𝐶 � 𝑥 , we encounter the essence

of the problem: cv(𝐶 � 𝑥) = 𝐶 . On the term level, we have no guarantee that the capture sets of 𝐶

and 𝑥 are connected. The (box) and (unbox) typing rules ensure that if a term gains access to a

capability by opening a box, then the “key” used to open the box (the𝐶 in𝐶 � 𝑥) must account for

the boxed capability. Thanks to them, we can say that cv(𝑡) is the authority of the term 𝑡 : during

reduction, 𝑡 can only use capabilities contained in cv(𝑡). We formally state this property as follows:

Lemma 4.15 (Used capability prediction). Let Ψ[𝑡] be a well-typed program that reduces in

zero or more steps to Ψ[𝑡 ′]. Then the primitive capabilities used during the reduction are a subset of

the authority of 𝑡 .

5 EXAMPLES
We have implemented a type checker for CC<:□ as an extension of the Scala 3 compiler to enable

experimentation with larger code examples. Notably, our extension infers which types must be

boxed, and automatically generates boxing and unboxing operations when values are passed to

and returned from instantiated generic datatypes, so none of these technical details appear in the

actual user-written Scala code.

In this section, we present examples that demonstrate the usability of the language. In Section 5.1,

we remain close to the core calculus by encoding lists using only functions; here, we still show the

boxed types and boxing and unboxing operations that the compiler infers in gray, though they are

not in the source code. In Sections 5.2 and 5.3, we use additional Scala features in larger examples,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 19

to implement stack allocation and polymorphic data structures. For these examples, we present the

source code without cluttering it with the boxing operations inferred by the compiler.

5.1 Church-Encoded Lists
Using the Scala prototype implementation of CC<:□ , the Böhm-Berarducci encoding [Böhm and

Berarducci 1985] of a linked list data structure can be implemented and typed as follows. Here, a

list is represented by its right fold function:

type Op[T <: □ {*} Any, C <: □ {*} Any] =

(v: T) => (s: C) => C

type List[T <: □ {*} Any] =

[C <: □ {*} Any] -> (op: Op[T, C]) -> {op} (s: C) -> C

def nil[T <: □ {*} Any]: List[T] =

[C <: □ {*} Any] => (op: Op[T, C]) => (s: C) => s

def cons[T <: □ {*} Any](hd: T, tl: List[T]): List[T] =

[C <: □ {*} Any] => (op: Op[T, C]) => (s: C) => op(hd)(tl[C](op)(s))

A list inherently captures any capabilities that may be captured by its elements. Therefore, naively,

one may expect the capture set of the list to include the capture set of the type T of its elements.

However, boxing and unboxing enables us to elide the capture set of the elements from the capture

set of the containing list. When constructing a list using cons, the elements must be boxed:

cons(□ 1, cons(□ 2, cons(□ 3, nil)))

A map function over the list can be implemented and typed as follows:

def map[A <: □ {*} Any, B <: □ {*} Any](xs: List[A])(f: {*} A -> B): List[B] =

{} ◦− xs[□ List[B]]((hd: A) => (tl: List[B]) => cons(f(hd), tl))(nil)

The mapped function f may capture any capabilities, as documented by the capture set {*} in its

type. However, this does not affect the type of map or its result type List[B], since the mapping is

strict, so the resulting list does not capture any capabilities captured by f. If a value returned by

the function f were to capture capabilities, this would be reflected in its type, the concrete type

substituted for the type variable B, and would therefore be reflected in the concrete instantiation of

the result type List[B] of map.

5.2 Stack Allocation
Automatic memory management using a garbage collector is convenient and prevents many errors,

but it can impose significant performance overheads in programs that need to allocate large numbers

of short-lived objects. If we can bound the lifetimes of some objects to coincide with a static scope,

it is much cheaper to allocate those objects on a stack as follows:
4

class Pooled

val stack = mutable.ArrayBuffer[Pooled]()

var nextFree = 0

def withFreshPooled[T](op: Pooled => T): T =

4
For simplicity, this example is neither thread nor exception safe.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

20 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

if nextFree >= stack.size then stack.append(new Pooled)

val pooled = stack(nextFree)

nextFree = nextFree + 1

val ret = op(pooled)

nextFree = nextFree - 1

ret

The withFreshPooled method calls the provided function op with a freshly stack-allocated

instance of class Pooled. It works as follows. The stack maintains a pool of already allocated

instances of Pooled. The nextFree variable records the offset of the first element of stack that is

available to reuse; elements before it are in use. The withFreshPooledmethod first checks whether

the stack has any available instances; if not, it adds one to the stack. Then it increments nextFree
to mark the first available instance as used, calls op with the instance, and decrements nextFree to
mark the instance as freed. In the fast path, allocating and freeing an instance of Pooled is reduced

to just incrementing and decrementing the integer nextFree.
However, this mechanism fails if the instance of Pooled outlives the execution of op, if op

captures it in its result. Then the captured instance may still be accessed while at the same time also

being reused by later executions of op. For example, the following invocation of withFreshPooled
returns a closure that accesses the Pooled instance when it is invoked on the second line, after the

Pooled instance has been freed:

val pooledClosure = withFreshPooled(pooled => () => pooled.toString)

pooledClosure ()

Using capture sets, we can prevent such captures and ensure the safety of stack allocation just by

marking the Pooled instance as tracked:

def withFreshPooled[T](op: (pooled: {*} Pooled) => T): T =

Now the pooled instance can be captured only in values whose capture set accounts for {pooled}.
The type variable T cannot be instantiated with such a capture set because pooled is not in

scope outside of withFreshPooled, so only {*} would account for {pooled}, but we disallowed
instantiating a type variable with {*}. With this declaration of withFreshPooled, the above

pooledClosure example is correctly rejected, while the following safe example is allowed:

withFreshPooled(pooled => pooled.toString)

5.3 Collections
In the following examples we show that a typing discipline based on CC<:□ can be lightweight

enough to make capture checking of operations on standard collection types practical. This is

important, since such operations are the backbone of many programs. All examples compile with

our current capture checking prototype [Scala 2022a].

We contrast the APIs of common operations on Scala’s standard collection types List and

Iterator when capture sets are taken into account. Both APIs are expressed as Scala 3 extension

methods [Odersky and Martres 2020] over their first parameter. Here is the List API:

extension [A](xs: List[A])

def apply(n: Int): A

def foldLeft[B](z: B)(op: (B, A) => B): B

def foldRight[B](z: B)(op: (A, B) => B): B

def foreach(f: A => Unit): Unit

def iterator: Iterator[A]

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 21

def drop(n: Int): List[A]

def map[B](f: A => B): List[B]

def flatMap[B](f: A => {*} IterableOnce[B]): List[B]

def ++[B >: A](xs: {*} IterableOnce[B]): List[B]

Notably, these methods have almost exactly the same signatures as their versions in the standard

Scala collections library. The only differences concern the arguments to flatMap and ++ which

now admit an IterableOnce argument with an arbitrary capture set. Of course, we could have left

out the {*} but this would have needlessly restricted the argument to non-capturing collections.

Contrast this with some of the same methods for iterators:

extension [A](it: Iterator[A])

def apply(n: Int): A

def foldLeft[B](z: B)(op: (B, A) => B): B

def foldRight[B](z: B)(op: (A, B) => B): B

def foreach(f: A => Unit): Unit

def drop(n: Int): {it} Iterator[A]

def map[B](f: A => B): {it, f} Iterator[B]

def flatMap[B](f: A => {*} IterableOnce[B]): {it, f} Iterator[B]

def ++[B >: A](xs: {*} IterableOnce[B]): {it, xs} Iterator[B]

Here, methods apply, foldLeft, foldRight, foreach again have the same signatures as in the cur-

rent Scala standard library. But the remaining four operations need additional capture annotations.

Method drop on iterators returns the given iterator it after skipping n elements. Consequently,

its result has {it} as capture set. Methods map and flatMap lazily map elements of the current

iterator as the result is traversed. Consequently they retain both it and f in their result capture set.

Method ++ concatenates two iterators and therefore retains both of them in its result capture set.

The examples attest to the practicality of capture checking. Method signatures are generally

concise. Higher-order methods over strict collections by and large keep the same types as before.

Capture annotations are only needed for capabilities that are retained in closures and are exe-

cuted on demand later. Where such annotations are needed they match the developer’s intuitive

understanding of reference patterns and signal information that looks relevant in this context.

6 RELATEDWORK
The results presented in this paper did not emerge in a vacuum and many of the underlying ideas

appeared individually elsewhere in similar or different form. We follow the structure of the informal

presentation in Section 2 and organize the discussion of related work according to the key ideas

behind CC<:□ .

Effects as Capabilities. Establishing effect safety by moderating access to effects via term-level

capabilities is not a new idea [Marino and Millstein 2009]. It has been proposed as a strategy to

retrofit existing languages with means to reason about effect safety [Choudhury and Krishnaswami

2020; Liu 2016; Osvald et al. 2016]. Recently, it also has been applied as the core principle behind a

new programming language featuring effect handlers [Brachthäuser et al. 2020a]. Similar to the

above prior work, we propose to use term-level capabilities to restrict access to effect operations

and other scoped resources with a limited lifetime. Representing effects as capabilities results in

a good economy of concepts: existing language features, like term-level binders can be reused,

programmers are not confronted with a completely new concept of effects or regions.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

22 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Making Capture Explicit. Having a term-level representation of scoped capabilities introduces

the challenge to restrict use of such capabilities to the scope in which they are still live. To address

this issue, effect systems have been introduced [Biernacki et al. 2020; Brachthäuser et al. 2020b;

Zhang and Myers 2019] but those can result in overly verbose and difficult to understand types

[Brachthäuser et al. 2020a]. A third approach, which we follow in this paper, is to make capture

explicit in the type of functions.

Hannan [1998] proposes a type-based escape analysis with the goal to facilitate stack allocation.

The analysis tracks variable reference using a type-and-effect system and annotates every function

typewith the set of free variables it captures. The authors leave the treatment of effect polymorphism

to future work. In a similar spirit, Scherer and Hoffmann [2013] present Open Closure Types to

facilitate reasoning about data flow properties such as non-interference. They present an extension

of the simply typed lambda calculus that enhances function types [Γ0] (𝜏) → 𝜏 with the lexical

environment Γ0 that was originally used to type the closure.

Brachthäuser et al. [2022] show System C, which mediates between first- and second-class values

with boxes. In their system, scoped capabilities are second-class values. Normally, second-class

values cannot be returned from any scope, but in System C they can be boxed and returned from

some scopes. The type of a boxed second-class value tracks which scoped capabilities it has captured

and accordingly, from which scopes it cannot be returned. System C tracks second-class values

with a coeffect-like environment and uses an effect-like discipline for tracking captured capabilities,

which can in specific cases be more precise than cv. In comparison, CC<:□ does not depend on a

notion of second-class values and deeply integrates capture sets with subtyping.

Recently, Bao et al. [2021] have proposed to qualify types with reachability sets. Their reachability

types allow reasoning about non-interference, scoping and uniqueness by tracking for each reference

what other references it may alias or (indirectly) point to. Their system formalizes subtyping but

not universal polymorphism. However, it relates reachability sets along a different dimension than

CC<:□ . Whereas in CC<:□ a subtyping relationship is established between a capability 𝑐 and the

capabilities in the type of 𝑐 , reachability types assume a subtyping relationship between a variable

𝑥 and the variable owning the scope where 𝑥 is defined. Reachability types track detailed points-to

and aliasing information in a setting with mutable variables, while CC<:□ is a more foundational

calculus for tracking references and capabilities that can be used as a guide for an implementation

in a complete programming language. It would be interesting to explore how reachability types

can be expressed in CC<:□ .

Capture Polymorphism. Combining effect tracking with higher-order functions immediately

gives rise to effect polymorphism, which has been a long-studied problem.

Similar to the usual (parametric) type polymorphism, the seminal work by Lucassen and Gifford

[1988] on type and effect systems featured (parametric) effect polymorphism by adding language

constructs for explicit region abstraction and application. Similarly, work on region based memory

management [Tofte and Talpin 1997] supports region polymorphism by explicit region abstraction

and application. Recently, languages with support for algebraic effects and handlers, such as Koka

[Leijen 2017] and Frank [Lindley et al. 2017], feature explicit, parametric effect polymorphism.

It has been observed multiple times, for instance by Osvald et al. [2016] and Brachthäuser et al.

[2020a], that parametric effect polymorphism can become verbose and results in complicated types

and confusing error messages. Languages sometimes attempt to hide the complexity – they “simplify

the types more and leave out ‘obvious’ polymorphism” [Leijen 2017]. However, this solution is not

satisfying since the full types resurface in error messages. In contrast, we support polymorphism

by reusing existing term-level binders and support simplifying types by means of subtyping and

subcapturing.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 23

Rytz et al. [2012] present a type-and-effect system in which higher-order functions like map can

be assigned simple signatures that do not mention effect variables. As in CC<:□ , it is not necessary

to modify the signatures of higher-order functions which only call their argument. However, in

the “argument-relative” system of Rytz et al., it is impossible to reference an effect of a particular

argument. This limits the overall expressivity in their system, compared to CC<:□ – for instance, it

is not possible to type function composition, or in general a function that returns a value whose

effect is relative to its argument. Their system also does not allow user-defined effects, while

CC<:□ allows tracking any variable by annotating it with an appropriate capture set.

The problem of how to prevent capabilities from escaping in closures is also addressed by second-

class values that can only be passed as arguments but not be returned in results or stored in mutable

fields. Siek et al. [2012] enforce second-class function arguments using a classical polymorphic

effect discipline whereas Osvald et al. [2016] and Brachthäuser et al. [2020a] present a specialized

type discipline for this task. Second-class values cannot be returned or closed-over by first-class

functions. On the other hand, second-class functions can freely close over capabilities, since they are

second-class themselves. This gives rise to a convenient and light-weight form of contextual effect

polymorphism [Brachthäuser et al. 2020a]. While this approach allows for effect polymorphism

with a simple type system, it is also restrictive because it also forbids local returns and retentions

of capabilities; a problem solved by adding boxing and unboxing [Brachthäuser et al. 2022].

Foundations of Boxing. Contextual modal type theory (CMTT) [Nanevski et al. 2008] builds on

intuitionistic modal logic. In intuitionistic modal logic, the graded propositional constructor [Ψ] 𝐴
(pronounced box) witnesses that 𝐴 can be proven only using true propositions in Ψ. Judgements in

CMTT have two contexts: Γ, roughly corresponding to CC<:□ bindings with {∗} as their capture
set, and a modal context Δ roughly corresponding to bindings with concrete capture sets. Bindings

in the modal context are necessarily boxed and annotated with a modality 𝑥 :: 𝐴[Ψ] ∈ Δ. Just like
our definition of captured variables in CC<:□ , the definition of free variables by Nanevski et al.

[2008] assigns the empty set to a boxed term (that is, 𝑓 𝑣 (box(Ψ.𝑀)) = {}). Similar to our unboxing

construct, using a variable bound in the modal context requires that the current context satisfies the

modality Ψ, mediated by a substitution 𝜎 . Different to CMTT, CC<:□ does not introduce a separate

modal context. It also does not annotate modalities on binders, instead these are kept in the types.

Also different to CMTT, in CC<:□ unboxing is annotated with a capture set and not a substitution.

Comonadic type systems were introduced to support reasoning about purity in existing, impure

languages [Choudhury and Krishnaswami 2020]. Very similar to the box modality of CMTT, a

type constructor ‘Safe’ witnesses the fact that its values are constructed without using any impure

capabilities. The type system presented by Choudhury and Krishnaswami [2020] only supports a

binary distinction between pure values and impure values, however, the authors comment that it

might be possible to generalize their system to graded modalities.

In the present paper, we use boxing as a practical tool, necessary to obtain concise types when

combining capture tracking with parametric type polymorphism.

Coeffect Systems. Coeffect systems also attach additional information to bindings in the environ-

ment, leading to a typing judgement of the form Γ@ C ⊢ 𝑒 : 𝜏 . Such systems can be seen as similar

in spirit to CC<:□ , where additional information is available about each variable in the environment

through the capture set of its type. Petricek et al. [2014] show a general coeffect framework that can

be instantiated to track various concepts such as bounded reuse of variables, implicit parameters

and data access. This framework is based on simply typed lambda calculus and its function types

are always coeffect-monomorphic. In contrast, CC<:□ is based on System F<: (thus supporting type
polymorphism and subtyping) and supports capture-polymorphic functions.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

24 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Object Capabilities. The (object-)capability model of programming [Boyland et al. 2001; Crary

et al. 1999; Miller 2006], controls security critical operations by requiring access to a capability.

Such a capability can be seen as the constructive proof that the holder is entitled to perform the

critical operation. Reasoning about which operations a module can perform is reduced to reasoning

about which references to capabilities a module holds.

The Wyvern language [Melicher et al. 2017] implements this model by distinguishing between

stateful resource modules and pure modules. Access to resource modules is restricted and only

possible through capabilities. Determining the authority granted by a module amounts to manually

inspecting its type signature and all of the type signatures of its transitive imports. To support this

analysis, Melicher [2020] extends the language with a fine-grained effect system that tracks access

of capabilities in the type of methods.

Figueroa et al. [2016] show an intricately engineered encoding of object capabilities in Haskell.

A monad transformer’s private operations can only be called from modules with the appropriate

authority. The capabilities may be part of a hierarchy, e.g. the ReadWrite capability may subsume

the Read and Write capabilities. Capabilities may be shared between modules through encoded

friend declarations, and one may determine a module’s authority like in Wyvern.

In CC<:□ , one can statically reason about authority and capabilities simply by inspecting capture

sets of types. Additionally, subcapturing naturally allows defining capability hierarchies. If we

model modules via function abstraction, the function’s capture set directly reflects its authority.

Importantly, CC<:□ does not include an effect system and thus tracks mention rather than use.

7 CONCLUSION
We introduced a new type system CC<:□ to track captured references of values. Tracked references

are restricted to capabilities, where capabilities are references bootstrapped from other capabilities,

starting with the universal capability. Implementing this simple principle then naturally suggests a

chain of design decisions:

(1) Because capabilities are variables, every function must have its type annotated with its free

capability variables.

(2) To manage the scoping of those free variables, function types must be dependently-typed.

(3) To prevent non-variable terms from occurring in types, the programming language is formu-

lated in monadic normal form.

(4) Because of type dependency, the let-bindings of MNF have to satisfy the avoidance property,

to prevent out-of-scope variables from occurring in types.

(5) To make avoidance possible, the language needs a rich notion of subtyping on the capture

sets.

(6) Because the capture sets represent object capabilities, the subcapture relation cannot just

be the subset relation on sets of variables – it also has to take into account the types of the

variables, since the variables may be bound to values which themselves capture capabilities.

(7) To keep the size of the capture sets from ballooning out of control, the paper introduces a box

connective with box and unbox rules to control when free variables are counted as visible.

We showed that the resulting system can be used as the basis for lightweight polymorphic effect

checking, without the need for effect quantifiers. We also identified three key principles that keep

notational overhead for capture tracking low:

– Variables are tracked only if their types have non-empty capture sets. In practice the majority

of variables are untracked and thus do not need to be mentioned at all.

– Subcapturing, subtyping and subsumption mean that more detailed capture sets can be

subsumed by coarser ones.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 25

– Boxed types stop propagation of capture information in enclosing types which avoids repeti-

tion in capture annotations to a large degree.

Our experience so far indicates that the presented calculus is simple and expressive enough to

be used as a basis for more advanced effect and resource checking systems and their practical

implementations.

ACKNOWLEDGMENTS
We thank Jonathan Aldrich, Vikraman Choudhury and Neal Krishnawami for their input in discus-

sions about this research. We thank the anonymous reviewers of previous versions of this paper

for their comments and suggestions. In particular, we paraphrased with permission one reviewer’s

summary of our design decisions in the conclusion. This research was partially funded by the

Natural Sciences and Engineering Research Council of Canada.

REFERENCES
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object Types.

In A List of Successes That Can Change the World. Springer, 249–272. https://doi.org/10.1007/978-3-319-30936-1_14

Yuyan Bao, Guannan Wei, Oliver Bracevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. 2021. Reachability types: tracking

aliasing and separation in higher-order functional programs. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–32.

https://doi.org/10.1145/3485516

Erik Barendsen and Sjaak Smetsers. 1996. Uniqueness Typing for Functional Languages with Graph Rewriting Semantics.

Mathematical Structures in Computer Science 6, 6 (Dec. 1996), 579–612. https://doi.org/10.1017/S0960129500070109

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by Day, Labels by Night: Effect Instances

via Lexically Scoped Handlers. In Proceedings of the Symposium on Principles of Programming Languages. ACM, New

York, NY, USA.

Corrado Böhm and Alessandro Berarducci. 1985. Automatic Synthesis of Typed 𝜆-Programs on Term Algebras. Theoretical

Computer Science 39 (1985), 135–154. https://doi.org/10.1016/0304-3975(85)90135-5

John Boyland, James Noble, andWilliam Retert. 2001. Capabilities for Sharing. In ECOOP 2001—Object-Oriented Programming,

Jørgen Lindskov Knudsen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 2–27.

Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects, Ca-

pabilities, and Boxes: From Scope-based Reasoning to Type-based Reasoning and Back. https://se.informatik.uni-

tuebingen.de/publications/brachthaeuser22effects/

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020a. Effects as Capabilities: Effect Handlers

and Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126 (Nov. 2020). https://doi.org/10.

1145/3428194

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020b. Effekt: Capability-Passing Style for Type-

and Effect-safe, Extensible Effect Handlers in Scala. Journal of Functional Programming (2020). https://doi.org/10.1017/

S0956796820000027

Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering Purity with Comonads and Capabilities. Proc. ACM

Program. Lang. 4, ICFP, Article 111 (Aug. 2020), 28 pages. https://doi.org/10.1145/3408993

David G. Clarke, John M. Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In Proceedings of the

13th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA ’98).

Association for Computing Machinery, New York, NY, USA, 48–64. https://doi.org/10.1145/286936.286947

William R. Cook. 2009. On Understanding Data Abstraction, Revisited. ACM, New York, NY, USA, 557–572.

Karl Crary, David Walker, and Greg Morrisett. 1999. Typed Memory Management in a Calculus of Capabilities. In Proceedings

of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Antonio, Texas, USA) (POPL

’99). Association for Computing Machinery, New York, NY, USA, 262–275. https://doi.org/10.1145/292540.292564

Ismael Figueroa, Nicolas Tabareau, and Éric Tanter. 2016. Effect Capabilities for Haskell: Taming Effect Interference in

Monadic Programming. Science of Computer Programming 119 (April 2016), 3–30. https://doi.org/10.1016/j.scico.2015.11.

010

Colin S. Gordon. 2020. Designing with Static Capabilities and Effects: Use, Mention, and Invariants (Pearl). In 34th

European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 10:1–10:25. https://doi.org/10.4230/LIPIcs.ECOOP.2020.10

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/3485516
https://doi.org/10.1017/S0960129500070109
https://doi.org/10.1016/0304-3975(85)90135-5
https://se.informatik.uni-tuebingen.de/publications/brachthaeuser22effects/
https://se.informatik.uni-tuebingen.de/publications/brachthaeuser22effects/
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1145/3408993
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/292540.292564
https://doi.org/10.1016/j.scico.2015.11.010
https://doi.org/10.1016/j.scico.2015.11.010
https://doi.org/10.4230/LIPIcs.ECOOP.2020.10

26 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. 2002. Region-Based Memory

Management in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and

Implementation (Berlin, Germany) (PLDI ’02). Association for Computing Machinery, New York, NY, USA, 282–293.

https://doi.org/10.1145/512529.512563

John Hannan. 1998. A Type-based Escape Analysis for Functional Languages. Journal of Functional Programming 8, 3 (May

1998), 239–273.

John Hatcliff and Olivier Danvy. 1994. A Generic Account of Continuation-Passing Styles. In Proceedings of the 21st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94). Association

for Computing Machinery, New York, NY, USA, 458–471. https://doi.org/10.1145/174675.178053

John Launchbury and Amr Sabry. 1997. Monadic State: Axiomatization and Type Safety. In Proceedings of the Second ACM

SIGPLAN International Conference on Functional Programming (Amsterdam, The Netherlands) (ICFP ’97). Association for

Computing Machinery, New York, NY, USA, 227–238. https://doi.org/10.1145/258948.258970

Daan Leijen. 2017. Type directed compilation of row-typed algebraic effects. In Proceedings of the Symposium on Principles

of Programming Languages. ACM, New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do be do be do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna

and Andrew D. Gordon (Eds.). ACM, 500–514. https://doi.org/10.1145/3009837.3009897

Fengyun Liu. 2016. A Study of Capability-Based Effect Systems. Master’s thesis. infoscience.epfl.ch/record/219173

J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’88). Association for Computing Machinery, New York, NY,

USA, 47–57. https://doi.org/10.1145/73560.73564

Daniel Marino and Todd D. Millstein. 2009. A Generic Type-and-Effect System. In Proceedings of TLDI’09: 2009 ACM SIGPLAN

International Workshop on Types in Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, Andrew

Kennedy and Amal Ahmed (Eds.). ACM, 39–50. https://doi.org/10.1145/1481861.1481868

Darya Melicher. 2020. Controlling Module Authority Using Programming Language Design. Ph.D. Dissertation. Carnegie

Mellon University.

Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. 2017. A capability-based module system for authority

control. In 31st European Conference on Object-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik.

Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to Access Control and Concurrency Control. Ph.D.

Dissertation. Johns Hopkins University.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual Modal Type Theory. ACM Trans. Comput.

Logic 9, 3, Article 23 (June 2008), 49 pages. https://doi.org/10.1145/1352582.1352591

James Noble, Jan Vitek, and John Potter. 1998. Flexible Alias Protection. In ECOOP’98 — Object-Oriented Programming (Lecture

Notes in Computer Science), Eric Jul (Ed.). Springer, Berlin, Heidelberg, 158–185. https://doi.org/10.1007/BFb0054091

Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and Sandro Stucki. 2018. Simplicitly:

Foundations and Applications of Implicit Function Types. Proc. ACM Program. Lang. 2, POPL, Article 42 (Dec. 2018),

29 pages. https://doi.org/10.1145/3158130

Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, and Ondřej Lhoták. 2021.

Safer Exceptions for Scala. In Scala Symposium, Chicago, USA. https://dl.acm.org/doi/10.1145/3486610.3486893

Martin Odersky and Guillaume Martres. 2020. Extension Methods. Scala 3 Language Reference Page. https://dotty.epfl.ch/

docs/reference/contextual/extension-methods.html

Leo Osvald, Grégory M. Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016. Gentrification gone

too far? affordable 2nd-class values for fun and (co-)effect. In Proceedings of the 2016 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016,

Amsterdam, The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 234–251.

https://doi.org/10.1145/2983990.2984009

Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: A Calculus of Context-Dependent Computation. In

Proceedings of the International Conference on Functional Programming (Gothenburg, Sweden). ACM, New York, NY, USA,

123–135. https://doi.org/10.1145/2628136.2628160

Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object types (DOT). In Proceedings of the 2016 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,

part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis Smaragdakis

(Eds.). ACM, 624–641. https://doi.org/10.1145/2983990.2984008

Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight Polymorphic Effects. In ECOOP 2012 - Object-Oriented

Programming - 26th European Conference, Beijing, China, June 11-16, 2012. Proceedings (Lecture Notes in Computer Science,

Vol. 7313), James Noble (Ed.). Springer, 258–282. https://doi.org/10.1007/978-3-642-31057-7_13

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

https://doi.org/10.1145/512529.512563
https://doi.org/10.1145/174675.178053
https://doi.org/10.1145/258948.258970
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009897
infoscience.epfl.ch/record/219173
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/1481861.1481868
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1007/BFb0054091
https://doi.org/10.1145/3158130
https://dl.acm.org/doi/10.1145/3486610.3486893
https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html
https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html
https://doi.org/10.1145/2983990.2984009
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1007/978-3-642-31057-7_13

Keeping Track of Capabilities 27

Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in Continuation-Passing Style. In LISP AND SYMBOLIC

COMPUTATION. 288–298.

Scala. 2022a. Scala 3: Capture Checking. https://dotty.epfl.ch/docs/reference/experimental/cc.html

Scala. 2022b. The Scala 3 compiler, also known as Dotty. https://dotty.epfl.ch

Gabriel Scherer and Jan Hoffmann. 2013. Tracking Data-Flow with Open Closure Types. In International Conference on Logic

for Programming Artificial Intelligence and Reasoning. Springer, 710–726. https://doi.org/10.1007/978-3-319-30936-1_14

Jeremy G. Siek, Michael M. Vitousek, and Jonathan D. Turner. 2012. Effects for Funargs. CoRR abs/1201.0023 (2012).

arXiv:1201.0023 http://arxiv.org/abs/1201.0023

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Inf. Comput. 132, 2 (Feb. 1997), 109–176.

https://doi.org/10.1006/inco.1996.2613

Philip Wadler. 1990. Linear Types can Change the World!. In Programming concepts and methods: Proceedings of the IFIP

Working Group 2.2, 2.3 Working Conference on Programming Concepts and Methods, Sea of Galilee, Israel, 2-5 April, 1990,

Manfred Broy and Cliff B. Jones (Eds.). North-Holland, 561.

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe Effect Handlers via Tunneling. Proc. ACM Program. Lang. 3,

POPL, Article 5 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290318

A PROOFS
A.1 Proof devices
Throughout the proof, we follow the Barendregt convention and only consider environments where

all variables are unique, i.e. if an environment is of the form Γ, 𝑥 : 𝑇 we have 𝑥 ∉ dom(Γ).
We define environment well-formedness ⊢ Γ wf in the natural way – empty environment is

well-formed, and if both ⊢ Γ wf and Γ ⊢ 𝑇 wf, then also Γ, 𝑥 : 𝑇 and Γ, 𝑋 <: 𝑇 .

To prove Preservation (Theorem A.43), we relate the typing derivation of a term of the form

𝜎 [𝑡] to the typing derivation for the plug term 𝑡 inside the store 𝜎 . We do so with the following

definition:

Matching environment Γ ⊢ 𝜎 ∼ Δ

Γ, 𝑥 : 𝑇 ⊢ 𝜎 ∼ Δ Γ ⊢ 𝑣 : 𝑇 𝑥 ∉ fv(𝑇)
Γ ⊢ let𝑥 = 𝑣 in𝜎 ∼ 𝑥 : 𝑇,Δ

Γ ⊢ [] ∼ ·

Definition A.1 (Evaluation context typing (Γ ⊢ 𝑒 : 𝑈 ⇒ 𝑇)). We say that 𝑒 can be typed as𝑈 ⇒ 𝑇

in Γ iff for all 𝑡 such that Γ ⊢ 𝑡 : 𝑈 , we have Γ ⊢ 𝑒 [𝑡] : 𝑇 .

Fact A.2. If 𝜎 [𝑡] is a well-typed term in Γ, then there exists a Δ matching 𝜎 (i.e. such that

Γ ⊢ 𝜎 ∼ Δ), finding it is decidable, and Γ,Δ is well-formed.

Fact A.3. The analogous holds for 𝑒 [𝑡].

A.2 Properties of Evaluation Contexts and Stores
In the proof, we use the following metavariables:𝐶, 𝐷 for capture sets, 𝑅, 𝑆 for shape types, 𝑃,𝑄,𝑇 ,𝑈

for types.

We also denote the capture set fragment of a type as cv(𝑇), defined as cv(𝐶 𝑅) = 𝐶 .

In all our statements, we implicitly assume that all environments are well-formed.

Lemma A.4 (Inversion of typing under an evaluation context). If Γ ⊢ 𝑒 [𝑠] : 𝑇 , then 𝑠 is
well-typed in Γ.

Proof. Proceed by induction on 𝑒 . If 𝑒 is empty then the result directly holds, so consider when

𝑠 = let𝑥 = 𝑒′ [𝑠′] in 𝑠′′. By inverting the typing derivation we know that Γ ⊢ 𝑒′ [𝑠′] : 𝑇 ′
, and

hence by induction we conclude that Γ ⊢ 𝑠 : 𝑈 for some type𝑈 . □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

https://dotty.epfl.ch/docs/reference/experimental/cc.html
https://dotty.epfl.ch
https://doi.org/10.1007/978-3-319-30936-1_14
https://arxiv.org/abs/1201.0023
http://arxiv.org/abs/1201.0023
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/3290318

28 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Lemma A.5 (Evaluation context typing inversion).

Γ ⊢ 𝑒 [𝑠] : 𝑇 implies that for some𝑈 we have Γ ⊢ 𝑒 : 𝑈 ⇒ 𝑇 and Γ ⊢ 𝑠 : 𝑈 .

Proof. By induction on the structure of 𝑒 . If 𝑒 = [], then Γ ⊢ 𝑠 : 𝑇 and clearly Γ ⊢ [] : 𝑇 ⇒ 𝑇 .

Otherwise 𝑒 = let𝑥 = 𝑒′ in 𝑡 . Proceed by induction on the typing derivation of 𝑒 [𝑠]. We can only

assume that Γ ⊢ 𝑒 [𝑠] : 𝑇 ′
for some 𝑇 ′

s.t. Γ ⊢ 𝑇 ′ <: 𝑇 .
Case (let). Then Γ ⊢ 𝑒′ [𝑠] : 𝑈 ′

and Γ, 𝑥 : 𝑈 ′ ⊢ 𝑡 : 𝑇 ′
for some𝑈 ′

. By the outer IH, for some

𝑈 we then have Γ ⊢ 𝑒′ : 𝑈 ⇒ 𝑈 ′
and Γ ⊢ 𝑠 : 𝑈 . The former unfolds to ∀𝑠′ . Γ ⊢ 𝑠′ : 𝑈 =⇒

Γ ⊢ 𝑒′ [𝑠′] : 𝑈 ′
. We now want to show that ∀𝑠′ . Γ ⊢ 𝑠′ : 𝑈 =⇒ Γ ⊢ 𝑒 [𝑠′] : 𝑇 ′

. We already

have Γ ⊢ 𝑒′ [𝑠′] : 𝑈 ′
and Γ, 𝑥 : 𝑈 ′ ⊢ 𝑡 : 𝑇 ′

, so we can conclude by (let).

Case (sub). Then Γ ⊢ 𝑒 [𝑠] : 𝑇 ′′
and Γ ⊢ 𝑇 ′′ <: 𝑇 ′

. We can conclude by the inner IH and

(trans).

□

Lemma A.6 (Evaluation context reification).

If both Γ ⊢ 𝑒 : 𝑈 ⇒ 𝑇 and Γ ⊢ 𝑠 : 𝑈 , then Γ ⊢ 𝑒 [𝑠] : 𝑇 .

Proof. Immediate from the definition of Γ ⊢ 𝑒 : 𝑈 ⇒ 𝑇 . □

Lemma A.7 (Store context reification). If Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝑡 : 𝑇 then Γ ⊢ 𝜎 [𝑡] : 𝑇 .

Proof. By induction on 𝜎 .

Case 𝜎 = []. Immediate.

Case 𝜎 = 𝜎 ′ [let𝑥 = 𝑣 in[]]. Then Δ = Δ′, 𝑥 : 𝑈 for some 𝑈 . Since 𝑥 ∉ fv(𝑇) as Γ ⊢ 𝑇 wf,
by (let), we have that Γ,Δ′ ⊢ let𝑥 = 𝑣 in 𝑡 and hence by the induction hypothesis for some

𝑈 we have that Γ, 𝑥 : 𝑈 ⊢ 𝜎 ′ [𝑡] : 𝑇 . The result follows directly.
□

The above lemma immediately gives us:

Corollary A.8 (Replacement of term under a store context). If Γ ⊢ 𝜎 [𝑡] : 𝑇 and

Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝑡 : 𝑇 , then for all 𝑡 ′ such that Γ,Δ ⊢ 𝑡 ′ : 𝑇 we have Γ ⊢ 𝜎 [𝑡 ′] : 𝑇 .

A.3 Properties of Subcapturing
Lemma A.9 (Top capture set). Let Γ ⊢ 𝐶 wf. Then Γ ⊢ 𝐶 <: {∗}.

Proof. By induction on Γ. If Γ is empty, then 𝐶 is either empty or ∗ ∈ 𝐶 , so we can conclude

by (sc-set) or (sc-elem) correspondingly. Otherwise, Γ = Γ′, 𝑥 : 𝐷 𝑆 and since Γ is well-formed,

Γ′ ⊢ 𝐷 wf. By (sc-set), we can conclude if for all 𝑦 ∈ 𝐶 we have Γ ⊢ {𝑦} <: {∗}. If 𝑦 = 𝑥 , by IH

we derive Γ′ ⊢ 𝐷 <: {∗}, which we then weaken to Γ and conclude by (sc-var). If 𝑦 ≠ 𝑥 , then

Γ′ ⊢ {𝑦} wf, so by IH we derive Γ′ ⊢ {𝑦} <: {∗} and conclude by weakening. □

Corollary A.10 (Effectively top capture set). Let Γ ⊢ 𝐶, 𝐷 wf such that ∗ ∈ 𝐷 . Then we can

derive Γ ⊢ 𝐶 <: 𝐷 .

Proof. We can derive Γ ⊢ 𝐶 <: {∗} by Lemma A.9 and then we can conclude by Lemma A.13

and (sc-elem). □

Lemma A.11 (Universal capability subcapturing inversion). Let Γ ⊢ 𝐶 <: 𝐷 . If ∗ ∈ 𝐶 , then

∗ ∈ 𝐷 .

Proof. By induction on subcapturing. Case (sc-elem) immediate, case (sc-set) by repeated IH,

case (sc-var) contradictory. □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 29

Lemma A.12 (Subcapturing distributivity). Let Γ ⊢ 𝐶 <: 𝐷 . Then for all 𝑥 ∈ 𝐶 we have

Γ ⊢ {𝑥} <: 𝐷 .

Proof. By inspection of the last subcapturing rule used to derive𝐶 <: 𝐷 . All cases are immediate.

If the last rule was (sc-set), we have our goal as premise. Otherwise, we have𝐶 = {𝑥} and the goal

follows directly. □

Lemma A.13 (Subcapturing transitivity). If Γ ⊢ 𝐶1 <: 𝐶2 and Γ ⊢ 𝐶2 <: 𝐶3 then Γ ⊢ 𝐶1 <:

𝐶3.

Proof. By induction on the first derivation.

Case (sc-elem). 𝐶1 = {𝑥} and 𝑥 ∈ 𝐶2, so by Lemma A.12 Γ ⊢ {𝑥} <: 𝐶3.

Case (sc-var). Then 𝐶1 = {𝑥} and 𝑥 : 𝐶4 𝑅 ∈ Γ and Γ ⊢ 𝐶4 <: 𝐶2. By IH Γ ⊢ 𝐶4 <: 𝐶3 and

we can conclude by (sc-var).

Case (sc-set). By repeated IH and (sc-set).

□

Lemma A.14 (Subcapturing reflexivity). If Γ ⊢ 𝐶 wf, then Γ ⊢ 𝐶 <: 𝐶 .

Proof. By (sc-set) and (sc-elem). □

Lemma A.15 (Subtyping implies subcapturing). If Γ ⊢ 𝐶1 𝑅1 <: 𝐶2 𝑅2, then Γ ⊢ 𝐶1 <: 𝐶2.

Proof. By induction on the subtyping derivation. If (capt), immediate. If (trans), by IH and

subcapturing transitivity Lemma A.13. If (refl), then𝐶1 = 𝐶2 and we can conclude by Lemma A.14.

Otherwise, 𝐶1 = 𝐶2 = {} and we can conclude by (sc-set). □

A.3.1 Subtyping inversion.

Fact A.16. Both subtyping and subcapturing are transitive.

Proof. Subtyping is intrisically transitive through (trans), while subcapturing admits transitiv-

ity as per Lemma A.13. □

Fact A.17. Both subtyping and subcapturing are reflexive.

Proof. Again, this is an intrinsic property of subtyping by (refl) and an admissible property of

subcapturing per Lemma A.14. □

Lemma A.18 (Subtyping inversion: type variable). If Γ ⊢ 𝑈 <: 𝐶 𝑋 , then 𝑈 is of the form

𝐶′ 𝑋 ′
and we have Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 ′ <: 𝑋 .

Proof. By induction on the subtyping derivation.

Case (tvar), (refl). Follow from reflexivity (A.17).

Case (capt). Then we have𝑈 = 𝐶′ 𝑆 and Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑆 <: 𝑋 .

This relationship is equivalent to Γ ⊢ {} 𝑆 <: {} 𝑋 , on which we invoke the IH.

By IH we have {} 𝑆 = {} 𝑌 and we can conclude with𝑈 = 𝐶′ 𝑌 .
Case (trans). Then we have Γ ⊢ 𝑈 <: 𝑈 and Γ ⊢ 𝑈 <: 𝐶 𝑋 . We proceed by using the IH

twice and conclude by transitivity (A.16).

Other rules are impossible.

□

Lemma A.19 (Subtyping inversion: capturing type). If Γ ⊢ 𝑈 <: 𝐶 𝑆 , then𝑈 is of the form

𝐶′ 𝑆 ′ such that Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑆 ′ <: 𝑆 .

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

30 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Proof. We take note of the fact that subtyping and subcapturing are both transitive (A.16) and

reflexive (A.17). The result follows from straightforward induction on the subtyping derivation. □

Lemma A.20 (Subtyping inversion: function type). If Γ ⊢ 𝑈 <: 𝐶 ∀(𝑥 : 𝑇1) 𝑇2, then𝑈 either

is of the form 𝐶′ 𝑋 and we have Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 <: ∀(𝑥 : 𝑇1) 𝑇2, or 𝑈 is of the form

𝐶′ ∀(𝑥 : 𝑈1) 𝑈2 and we have Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑇1 <: 𝑈1 and Γ, 𝑥 : 𝑇1 ⊢ 𝑈2 <: 𝑇2.

Proof. By induction on the subtyping derivation.

Case (tvar). Immediate.

Case (fun), (refl). Follow from reflexivity (A.17).

Case (capt). Then we have Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑆 <: ∀(𝑥 : 𝑇1) 𝑇2.
This relationship is equivalent to Γ ⊢ {} 𝑆 <: {} ∀(𝑥 : 𝑇1) 𝑇2, on which we invoke the IH.

By IH {} 𝑆 might have two forms. If {} 𝑆 = {} 𝑋 , then we can conclude with𝑈 = 𝐶′ 𝑋 .

Otherwise we have {} 𝑆 = {} ∀(𝑥 : 𝑈1) 𝑈2 and Γ ⊢ 𝑇1 <: 𝑈1 and Γ, 𝑥 : 𝑇1 ⊢ 𝑈2 <: 𝑇2.

Then,𝑈 = 𝐶′ ∀(𝑥 : 𝑈1) 𝑈2 lets us conclude.

Case (trans). Then we have Γ ⊢ 𝑈 <: 𝑈 ′
and Γ ⊢ 𝑈 <: 𝐶 ∀(𝑥 : 𝑇1) 𝑇2. By IH𝑈 may have

one of two forms. If𝑈 = 𝐶′ 𝑋 , we proceed with Lemma A.18 and conclude by transitivity

(A.16).

Otherwise 𝑈 = 𝐶′ ∀(𝑥 : 𝑈1) 𝑈2 and we use the IH again on Γ ⊢ 𝑈 ′ <: 𝐶′ ∀(𝑥 : 𝑈1) 𝑈2. If

𝑈 = 𝐶′′ 𝑋 , we again can conclude by (A.16). Otherwise if𝑈 = 𝐶′′ ∀(𝑥 : 𝑈1) 𝑈2, the IH only

gives us Γ, 𝑥 : 𝑈1 ⊢ 𝑈2 <: 𝑈2, which we need to narrow to Γ, 𝑥 : 𝑇1 before we can similarly

conclude by transitivity (A.16).

Other rules are not possible.

□

Lemma A.21 (Subtyping inversion: type function type). If Γ ⊢ 𝑈 <: 𝐶 ∀[𝑋 <: 𝑇1] 𝑇2, then
𝑈 either is of the form 𝐶′ 𝑋 and we have Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 <: ∀[𝑋 <: 𝑇1] 𝑇2, or 𝑈 is of the

form 𝐶′ ∀[𝑋 <: 𝑈1] 𝑈2 and we have Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑇1 <: 𝑈1 and Γ, 𝑋 <: 𝑇1 ⊢ 𝑈2 <: 𝑇2.

Proof. Analogous to the proof of Lemma A.20. □

Lemma A.22 (Subtyping inversion: boxed type). If Γ ⊢ 𝑈 <: 𝐶 □ 𝑇 , then 𝑈 either is of the

form 𝐶′ 𝑋 and we have Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑋 <: □ 𝑇 , or 𝑈 is of the form 𝐶′ □ 𝑈 ′
and we have

Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑈 ′ <: 𝑇 .

Proof. Analogous to the proof of Lemma A.20. □

A.3.2 Permutation, weakening, narrowing.

Lemma A.23 (Permutation). Permutating the bindings in the environment up to preserving

environment well-formedness also preserves type well-formedness, subcapturing, subtyping and typing.

Let Γ and Δ be the original and permutated context, respectively. Then:

(1) If Γ ⊢ 𝑇 wf, then Δ ⊢ 𝑇 wf.
(2) If Γ ⊢ 𝐶1 <: 𝐶2, then Δ ⊢ 𝐶1 <: 𝐶2.

(3) If Γ ⊢ 𝑈 <: 𝑇 , then Δ ⊢ 𝑈 <: 𝑇 .

(4) If Γ ⊢ 𝑡 : 𝑇 , then Δ ⊢ 𝑡 : 𝑇 .

Proof. As usual, order of the bindings in the environment is not used in any rule. □

Lemma A.24 (Weakening). Adding a binding to the environment such that the resulting environ-

ment is well-formed preserves type well-formedness, subcapturing, subtyping and typing.

Let Γ and Δ be the original and extended context, respectively. Then:

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 31

(1) If Γ ⊢ 𝑇 wf, then Δ ⊢ 𝑇 wf.
(2) If Γ ⊢ 𝐶1 <: 𝐶2, then Δ ⊢ 𝐶1 <: 𝐶2.

(3) If Γ ⊢ 𝑈 <: 𝑇 , then Δ ⊢ 𝑈 <: 𝑇 .

(4) If Γ ⊢ 𝑡 : 𝑇 , then Δ ⊢ 𝑡 : 𝑇 .

Proof. As usual, the rules only check if a variable is bound in the environment and all versions

of the lemma are provable by straightforward induction. For rules which extend the environment,

such as (abs), we need permutation. All cases are analogous, so we will illustrate only one.

Case (abs).WLOG we assume that Δ = Γ, 𝑥 : 𝑇 . We know that Γ ⊢ 𝜆(𝑦 : 𝑈)𝑡 ′ : ∀(𝑦 : 𝑈) 𝑈 .

and from the premise of (abs) we also know that Γ, 𝑦 : 𝑈 ⊢ 𝑡 ′ : 𝑈 .

By IH, we have Γ, 𝑦 : 𝑈 , 𝑥 : 𝑇 ⊢ 𝑡 ′ : 𝑈 . Γ, 𝑥 : 𝑇,𝑦 : 𝑈 is still a well-formed environment

(as 𝑇 cannot mention 𝑦) and by permutation we have Γ, 𝑥 : 𝑇,𝑦 : 𝑈 ⊢ 𝑡 ′ : 𝑈 . Then by (abs)

we have Γ, 𝑥 : 𝑇 ⊢ 𝜆(𝑦 : 𝑈)𝑡 ′ : ∀(𝑦 : 𝑈) 𝑈 , which concludes.

□
Lemma A.25 (Type binding narrowing).

(1) If Γ ⊢ 𝑆 ′ <: 𝑆 and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇 wf, then Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑇 wf.
(2) If Γ ⊢ 𝑆 ′ <: 𝑆 and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐶1 <: 𝐶2, then Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝐶1 <: 𝐶2.

(3) If Γ ⊢ 𝑆 ′ <: 𝑆 and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑇1 <: 𝑇2, then Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑇1 <: 𝑇2.

(4) If Γ ⊢ 𝑆 ′ <: 𝑆 and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑡 : 𝑇 , then Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑡 : 𝑇 .

Proof. By straightforward induction on the derivations. Only subtyping considers types to

which type variables are bound, and the only rule to do so is (tvar), which we prove below. All

other cases follow from IH or other narrowing lemmas.

Case (tvar).We need to prove Γ, 𝑋 <: 𝑆 ′,Δ ⊢ 𝑋 <: 𝑆 , which follows from weakening the

lemma premise and using (trans) together with (tvar).

□
Lemma A.26 (Term binding narrowing).

(1) If Γ ⊢ 𝑈 ′ <: 𝑈 and Γ, 𝑥 : 𝑈 ,Δ ⊢ 𝑇 wf, then Γ, 𝑥 : 𝑈 ′,Δ ⊢ 𝑇 wf.
(2) If Γ ⊢ 𝑈 ′ <: 𝑈 and Γ, 𝑥 : 𝑈 ,Δ ⊢ 𝐶1 <: 𝐶2, then Γ, 𝑥 : 𝑈 ′,Δ ⊢ 𝐶1 <: 𝐶2.

(3) If Γ ⊢ 𝑈 ′ <: 𝑈 and Γ, 𝑥 : 𝑈 ,Δ ⊢ 𝑇1 <: 𝑇2, then Γ, 𝑥 : 𝑈 ′,Δ ⊢ 𝑇1 <: 𝑇2.

(4) If Γ ⊢ 𝑈 ′ <: 𝑈 and Γ, 𝑥 : 𝑈 ,Δ ⊢ 𝑡 : 𝑇 , then Γ, 𝑥 : 𝑈 ′,Δ ⊢ 𝑡 : 𝑇 .

Proof. By straightforward induction on the derivations. Only subcapturing and typing consider

types to which term variables are bound. Only (sc-var) and (var) do so, which we prove below. All

other cases follow from IH or other narrowing lemmas.

Case (var). We know that 𝑈 = 𝐶 𝑅 and Γ, 𝑥 : 𝐶 𝑅,Δ ⊢ 𝑥 : {𝑥} 𝑅. As Γ ⊢ 𝑈 ′ <: 𝑈 ,

from Lemma A.19 we know that 𝑈 ′ = 𝐶′ 𝑅′
and that Γ ⊢ 𝑅′ <: 𝑅. We need to prove

that Γ, 𝑥 : 𝐶′ 𝑅′,Δ ⊢ 𝑥 : {𝑥} 𝑅. We can do so through (var), (sub), (capt), (sc-elem) and

weakening Γ ⊢ 𝑅′ <: 𝑅.
Case (sc-var). Then we know that𝐶1 = {𝑦} and that 𝑦 : 𝑇 ∈ Γ, 𝑥 : 𝑈 ,Δ and that Γ, 𝑥 : 𝑈 ,Δ ⊢
cv(𝑇) <: 𝐶2.

If 𝑦 ≠ 𝑥 , we can conclude by IH and (sc-var).

Otherwise, we have 𝑇 = 𝑈 . From Lemma A.19 we know that Γ ⊢ cv(𝑈 ′) <: cv(𝑈), and
from IH we know that Γ, 𝑥 : 𝑈 ′,Δ ⊢ cv(𝑈) <: 𝐶2. By (sc-var) to conclude it is enough to

have Γ, 𝑥 : 𝑈 ′,Δ ⊢ cv(𝑈 ′) <: 𝐶2, which we do have by connecting two previous conclusions

by weakening and Lemma A.13.

□

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

32 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

A.4 Substitution
A.4.1 Term Substitution. We will make use of the following fact:

Fact A.27. If 𝑥 : 𝑇 ∈ Γ and ⊢ Γ wf, then Γ = Δ1, 𝑥 : 𝑇,Δ2 and Δ1 ⊢ 𝑇 wf and so 𝑥 ∉ fv(𝑇).

Lemma A.28 (Term substitution preserves subcapturing). If Γ, 𝑥 : 𝑃,Δ ⊢ 𝐶1 <: 𝐶2 and

Γ ⊢ 𝐷 <: 𝑐𝑣 (𝑃), then Γ, [𝑥 := 𝐷]Δ ⊢ [𝑥 := 𝐷]𝐶1 <: [𝑥 := 𝐷]𝐶2.

Proof. Define 𝜃 ≜ [𝑥 := 𝐷]. By induction on the subcapturing derivation.

Case (sc-elem). Then 𝐶1 = {𝑦} and 𝑦 ∈ 𝐶2. Inspect if 𝑦 = 𝑥 . If no, then our goal is Γ, 𝜃Δ ⊢
{𝑦} <: 𝜃𝐶2. In this case, 𝑦 ∈ 𝜃𝐶2, which lets us conclude by (sc-elem). Otherwise, we have

𝜃𝐶2 = (𝐶2 \ {𝑥}) ∪ 𝐷 , as 𝑥 ∈ 𝐶2. Then our goal is Γ, 𝜃Δ ⊢ 𝐷 <: (𝐶2 \ {𝑥}) ∪ 𝐷 , which can

be shown by (sc-set) and (sc-elem).

Case (sc-var). Then 𝐶1 = {𝑦} and 𝑦 : 𝐶3 𝑆 ∈ Γ, 𝑥 : 𝑃,Δ and Γ, 𝑥 : 𝑃,Δ ⊢ 𝐶3 <: 𝐶2.

Inspect if 𝑦 = 𝑥 . If yes, then our goal is Γ, 𝜃Δ ⊢ 𝐷 <: 𝜃𝐶2. By IH we know that Γ, 𝜃Δ ⊢
𝜃𝐶3 <: 𝜃𝐶2. As 𝑥 = 𝑦, we have 𝑃 = 𝐶3 𝑆 and therefore based on an initial premise of the

lemma we have Γ ⊢ 𝐷 <: 𝐶3. Then by weakening and IH, we know that Γ, 𝜃Δ ⊢ 𝜃𝐷 <: 𝜃𝐶3,

which means we can conclude by Lemma A.13.

Otherwise, 𝑥 ≠ 𝑦, and our goal is Γ, 𝜃Δ ⊢ 𝐶1 <: 𝜃𝐶2. We inspect where 𝑦 is bound.

Case 𝑦 ∈ dom(Γ). Then note that 𝑦 ∉ 𝐶3 by Fact A.27. By IH we have Γ, 𝜃Δ ⊢ 𝜃𝐶3 <:

𝜃𝐶2. We can conclude by (sc-var) as [𝑥 := 𝐷]𝐶3 = 𝐶3 and 𝑦 : 𝐶3 𝑃 ∈ Γ, 𝜃Δ.
Case 𝑦 ∈ dom(Δ). Then 𝑦 : 𝜃 (𝐶3 𝑃) ∈ Γ, 𝜃Δ and we can conclude by IH and (sc-var).

Case (sc-set). Then 𝐶1 = {𝑦1, . . . , 𝑦𝑛} and we inspect if 𝑥 ∈ 𝐶1.

If not, then for all 𝑦 ∈ 𝐶1 we have 𝜃 {𝑦} = {𝑦} and so we can conclude by repeated IH on

our premises and (sc-set).

If yes, then we know that: ∀𝑦 ∈ 𝐶1. Γ, 𝑥 : 𝑃,Δ ⊢ {𝑦} <: 𝐶2. We need to show that Γ, 𝜃Δ ⊢
𝜃𝐶1 <: 𝜃𝐶2. By (sc-set), it is enough to show that if 𝑦′ ∈ 𝜃𝐶1, then Γ, 𝜃Δ ⊢ {𝑦′} <: 𝜃𝐶2. For

each such 𝑦′, there exists 𝑦 ∈ 𝐶1 such that 𝑦′ ∈ 𝜃 {𝑦}. For this 𝑦, from a premise of (sc-set)

we know that Γ, 𝑥 : 𝑃,Δ ⊢ {𝑦} <: 𝜃𝐶2 and so by IH we have Γ, 𝜃Δ ⊢ 𝜃 {𝑦} <: 𝜃𝐶2. Based on

that, by Lemma A.13 we also have Γ, 𝜃Δ ⊢ {𝑦′} <: 𝜃𝐶2. which is our goal.

□

Lemma A.29 (Term substitution preserves subtyping). If Γ, 𝑥 : 𝑃,Δ ⊢ 𝑈 <: 𝑇 and Γ ⊢ 𝑦 : 𝑃 ,

then Γ, [𝑥 := 𝑦]Δ ⊢ [𝑥 := 𝑦]𝑈 <: [𝑥 := 𝑦]𝑇 .

Proof. Define 𝜃 ≜ [𝑥 := 𝑦]. Proceed by induction on the subtyping derivation.

Case (refl), (top). By same rule.

Case (capt). By IH and Lemma A.31 and (capt).

Case (trans), (boxed), (fun), (tfun). By IH and re-application of the same rule.

Case (tvar). Then 𝑈 = 𝑌 and 𝑇 = 𝑆 and 𝑌 <: 𝑆 ∈ Γ, 𝑥 : 𝑈 ,Δ and our goal is Γ, 𝜃Δ ⊢ 𝜃𝑌 <:

𝜃 (𝑆). Note that 𝑥 ≠ 𝑌 and inspect where 𝑌 is bound. If 𝑌 ∈ dom(Γ), we have 𝑌 <: 𝑆 ∈ Γ, 𝜃Δ
and since 𝑥 ∉ fv(𝑆) (Fact A.27), 𝜃 (𝑆) = 𝑆 . Then, we can conclude by (tvar). Otherwise if

𝑌 ∈ dom(Δ), we have 𝑌 <: 𝜃𝑆 ∈ Γ, 𝜃Δ and again we can conclude by (tvar).

□

Lemma A.30 (Term substitution preserves typing). If Γ, 𝑥 : 𝑃,Δ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝑥 ′ : 𝑃 , then
Γ, [𝑥 := 𝑥 ′]Δ ⊢ [𝑥 := 𝑥 ′]𝑡 : [𝑥 := 𝑥 ′]𝑇 .

Proof. Define 𝜃 ≜ [𝑥 := 𝑥 ′]. Proceed by induction on the typing derivation.

Case (var). Then 𝑡 = 𝑦 and 𝑦 : 𝐶 𝑆 ∈ Γ, 𝑥 : 𝑃,Δ and 𝑇 = {𝑦} 𝑆 and our goal is Γ, 𝜃Δ ⊢ 𝑦 :

𝜃 ({𝑦} 𝑆).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 33

If 𝑦 = 𝑥 , then 𝑃 = 𝐶 𝑆 and 𝜃 ({𝑥} 𝑆) = {𝑥 ′} 𝑆 . Our goal is Γ, 𝜃Δ ⊢ 𝑥 ′ : {𝑥 ′} 𝑆 and we can

conclude by (var).

Otherwise, 𝑦 ≠ 𝑥 and we inspect where 𝑦 is bound.

If 𝑦 ∈ dom(Γ), then 𝑥 ∉ fv(𝐶 𝑆) and so 𝜃 ({𝑧} 𝑆) = {𝑧} 𝑆 and we can conclude by (var).

Otherwise, 𝑦 ∈ dom(Δ), so 𝑦 : 𝜃 (𝐶 𝑆) ∈ Γ, 𝜃Δ and we can conclude by (var).

Case (sub). By IH, Lemma A.29 and (sub).

Case (abs). Then 𝑡 = 𝜆 (𝑦 : 𝑄). 𝑡 ′,𝑇 = 𝑐𝑣 (𝑡) ∀(𝑦 : 𝑄) 𝑇 ′
and Γ, 𝑥 : 𝑃,Δ, 𝑦 : 𝑄 ⊢ 𝑡 ′ : 𝑇 ′

.

By IH, we have that Γ, 𝜃Δ, 𝑦 : 𝜃𝑄 ⊢ 𝜃𝑡 ′ : 𝜃𝑇 ′
. We note that cv(𝜃𝑡) = 𝜃 cv(𝑡), which lets

us conclude by (abs).

Case (tabs). Similar to previous rule.

Case (app). Then 𝑡 = 𝑧1 𝑧2 and Γ, 𝑥 : 𝑃,Δ ⊢ 𝑧1 : 𝐶 ∀(𝑦 : 𝑄) 𝑇 ′
and Γ, 𝑥 : 𝑃,Δ ⊢ 𝑧1 : 𝑄 and

𝑇 = [𝑦 := 𝑧2]𝑇 ′
.

By IH we have Γ, 𝜃Δ ⊢ 𝜃𝑧1 : 𝜃 (𝐶 ∀(𝑦 : 𝑄) 𝑇 ′) and Γ, 𝜃Δ ⊢ 𝜃𝑧2 : 𝜃𝑄 .

Then by (app) we have Γ, 𝜃Δ ⊢ 𝜃 (𝑧1 𝑧2) : [𝑦 := 𝜃𝑧2]𝜃𝑇 ′
.

As 𝑦 ≠ 𝑥 and 𝑦 ≠ 𝑥 ′, we have [𝑦 := 𝜃𝑧2]𝜃𝑇 ′ = 𝜃 ([𝑦 := 𝑧2]𝑇 ′), which concludes.

Case (tapp). Similar to previous rule.

Case (box). Then 𝑡 = □ 𝑧 and Γ, 𝑥 : 𝑃,Δ ⊢ 𝑧 : 𝐶 𝑆 and 𝑇 = □ 𝐶 𝑆 .

By IH, we have Γ, 𝜃Δ ⊢ 𝜃𝑧 : 𝜃𝐶 𝜃𝑆 . If 𝑥 ∉ 𝐶 , we have 𝜃𝐶 = 𝐶 and 𝐶 ⊆ dom(Γ, 𝜃Δ) which
lets us conclude by (box). Otherwise, 𝜃𝐶 = (𝐶 \ {𝑥}) ∪ {𝑦} As Γ ⊢ 𝑦 : 𝑈 , 𝜃𝐶 ⊆ dom(Γ, 𝜃Δ),
which again lets us conclude by (box).

Case (unbox). Analogous to the previous rule. Note that we just swap the types in the

premise and the conclusion.

Case (let). Then 𝑡 = let𝑦 = 𝑠 in 𝑡 ′ and Γ, 𝑥 : 𝑃,Δ ⊢ 𝑠 : 𝑄 and Γ, 𝑥 : 𝑃,Δ, 𝑦 : 𝑄 ⊢ 𝑡 ′ : 𝑇 . By
the IH, we have Γ, 𝜃Δ ⊢ 𝜃𝑠 : 𝜃𝑄 and Γ, 𝜃Δ, 𝑦 : 𝜃𝑄 ⊢ 𝜃𝑡 ′ : 𝜃𝑇 .
Then by (let) we also have Γ, 𝜃Δ ⊢ 𝜃 (let𝑦 = 𝑠 in 𝑡 ′) : 𝜃𝑇 , which concludes. □

A.4.2 Type Substitution.

Lemma A.31 (Type substitution preserves subcapturing). If Γ, 𝑋 <: 𝑆,Δ ⊢ 𝐶 <: 𝐷 and

Γ ⊢ 𝑅 <: 𝑆 then Γ, [𝑋 := 𝑅]Δ ⊢ 𝐶 <: 𝐷 .

Proof. Define 𝜃 ≜ [𝑋 := 𝑅]. Proceed by induction on the subcapturing derivation.

Case (sc-set), (sc-elem). By IH and same rule.

Case (sc-var). Then 𝐶 = {𝑦}, 𝑦 : 𝐶′ 𝑆 ′ ∈ Γ, 𝑋 <: 𝑆,Δ, 𝑦 ≠ 𝑋 . Inspect where 𝑦 is bound.

If 𝑦 ∈ dom(Γ), we have 𝑦 : 𝐶′ 𝑆 ′ ∈ Γ, 𝜃Δ. Otherwise, by definition of substition we have

𝑦 : 𝐶′ 𝜃𝑆 ′ ∈ Γ, 𝜃Δ. In both cases we can conclude by (sc-var), since 𝑦 is still bound to a type

whose capture set is 𝐶′
.

□

Lemma A.32 (Type substitution preserves subtyping). If Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑈 <: 𝑇 and Γ ⊢ 𝑅 <:

𝑆 , then Γ, [𝑋 := 𝑅]Δ ⊢ [𝑋 := 𝑅]𝑈 <: [𝑋 := 𝑅]𝑇 .
Proof. Define 𝜃 ≜ [𝑋 := 𝑅]. Proceed by induction on the subtyping derivation.

Case (refl), (top). By same rule.

Case (capt). By IH and Lemma A.31 and (capt).

Case (trans), (boxed), (fun), (tfun). By IH and re-application of the same rule.

Case (tvar). Then 𝑈 = 𝑌 and 𝑇 = 𝑆 ′ and 𝑌 <: 𝑆 ′ ∈ Γ, 𝑋 <: 𝑆,Δ and our goal is Γ, 𝑋 <:

𝑆,Δ ⊢ 𝜃𝑌 <: 𝜃𝑆 ′. If 𝑌 = 𝑋 , by lemma premise and weakening. Otherwise, inspect where 𝑌

is bound. If 𝑌 ∈ dom(Γ), we have 𝑌 <: 𝑆 ′ ∈ Γ, 𝜃Δ and since 𝑋 ∉ fv(𝑆 ′) (Fact A.27), 𝜃𝑆 ′ = 𝑆 ′.
Then, we can conclude by (tvar). Otherwise if 𝑌 ∈ dom(Δ), we have 𝑌 <: 𝜃𝑆 ′ ∈ Γ, 𝜃Δ and

we can conclude by (tvar).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

34 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

□

Lemma A.33 (Type substitution preserves typing). If Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑡 : 𝑇 and Γ ⊢ 𝑅 <: 𝑆 ,

then Γ, [𝑋 := 𝑅]Δ ⊢ [𝑋 := 𝑅]𝑡 : [𝑋 := 𝑅]𝑇 .

Proof. Define 𝜃 ≜ [𝑋 := 𝑅]. Proceed by induction on the typing derivation.

Case (var). Then 𝑡 = 𝑦, 𝑦 : 𝐶 𝑆 ′ ∈ Γ, 𝑋 <: 𝑆,Δ, 𝑦 ≠ 𝑋 , and our goal is Γ, 𝜃Δ ⊢ 𝑦 : {𝑦} 𝜃𝑆 ′.
Inspect where 𝑦 is bound. If 𝑦 ∈ dom(Γ), then 𝑦 : 𝐶 𝑆 ′ ∈ Γ, 𝜃Δ and 𝑋 ∉ fv(𝑆 ′) (Fact A.27).

Then, 𝜃 (𝐶 𝑆 ′) = 𝐶 𝑆 ′ and we can conclude by (var). Otherwise, 𝑦 : 𝐶 𝜃𝑆 ′ ∈ Γ, 𝜃Δ and we can

directly conclude by (var).

Case (abs), (tabs). In both rules, observe that type substitution does not affect cv and conclude

by IH and rule re-application.

Case (app). Then we have 𝑡 = 𝑥 𝑦 and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑥 : 𝐶 ∀(𝑧 : 𝑈) 𝑇0 and 𝑇 = [𝑧 := 𝑦]𝑇0.
We observe that 𝜃 [𝑧 := 𝑦]𝑇0 = [𝑧 := 𝑦]𝜃𝑇0 and 𝜃𝑡 = 𝑡 and conclude by IH and (app).

Case (tapp). Then we have 𝑡 = 𝑥 [𝑆 ′] and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑥 : 𝐶 ∀[𝑍 <: 𝑆 ′] 𝑇0 and 𝑇 = [𝑍 :=

𝑆 ′]𝑇0.
We observe that 𝜃 [𝑍 := 𝑆 ′]𝑇0 = [𝑍 := 𝜃𝑆 ′]𝜃𝑇0. By IH, Γ, 𝜃Δ ⊢ 𝑥 : 𝐶 ∀[𝑍 <: 𝜃𝑆 ′] 𝑇0, Then,

we can conclude by (tapp).

Case (box). Then 𝑡 = □ 𝑦 and Γ, 𝑋 <: 𝑆,Δ ⊢ 𝑦 : 𝐶 𝑆 ′ and 𝑇 = □ 𝐶 𝑆 ′, and our goal is

Γ, 𝜃Δ ⊢ 𝑦 : □ 𝜃 (𝐶 𝑆 ′).
Inspect where 𝑦 is bound. If 𝑦 ∈ dom(Γ), then 𝑦 : 𝐶 𝑆 ′ ∈ Γ, 𝜃Δ and 𝑋 ∉ fv(𝑆 ′) (Fact A.27)

. Then, 𝜃 (𝐶′ 𝑆 ′) = 𝐶′ 𝑆 ′ and we can conclude by (box). Otherwise, 𝑦 : 𝐶 𝜃𝑆 ′ ∈ Γ, 𝜃Δ and we

can directly conclude by (box).

Case (unbox). Proceed analogously to the case for (box) – we just swap the types in the

premise and in the consequence.

Case (sub). By IH and A.32.

Case (let). Then 𝑡 = let𝑦 = 𝑠 in 𝑡 ′ and Γ, 𝑥 : 𝑃,Δ ⊢ 𝑠 : 𝑄 and Γ, 𝑥 : 𝑃,Δ, 𝑦 : 𝑄 ⊢ 𝑡 ′ : 𝑇 . By
the IH, we have Γ, 𝜃Δ ⊢ 𝜃𝑠 : 𝜃𝑄 and Γ, 𝜃Δ, 𝑦 : 𝜃𝑄 ⊢ 𝜃𝑡 ′ : 𝜃𝑇 .
Then by (let) we also have Γ, 𝜃Δ ⊢ 𝜃 (let𝑦 = 𝑠 in 𝑡 ′) : 𝜃𝑇 , which concludes. □

A.5 Main Theorems – Soundness
A.5.1 Preliminaries. As we state Preservation (Theorem A.43) in a non-empty environment, we

need to show canonical forms lemmas in such an environment as well. To do so, we need to know

that values cannot be typed with a type that is a type variable, which normally follows from the

environment being empty. Instead, we show the following lemma:

Lemma A.34 (Value typing). If Γ ⊢ 𝑣 : 𝑇 , then 𝑇 is not of the form 𝐶 𝑋 .

Proof. By induction on the typing derivation.

For rule (sub), we know that Γ ⊢ 𝑣 : 𝑈 and Γ ⊢ 𝑈 <: 𝑇 . Assuming 𝑇 = 𝐶 𝑋 , we have a

contradiction by Lemma A.18 and IH.

Rules (box), (abs), (tabs) are immediate, and other rules are not possible. □

Lemma A.35 (Canonical forms: term abstraction). If Γ ⊢ 𝑣 : 𝐶 ∀(𝑥 : 𝑈) 𝑇 , then we have

𝑣 = 𝜆(𝑥 : 𝑈 ′)𝑡 and Γ ⊢ 𝑈 <: 𝑈 ′
and Γ, 𝑥 : 𝑈 ⊢ 𝑡 : 𝑇 .

Proof. By induction on the typing derivation.

For rule (sub), we observe that by Lemma A.20 and by Lemma A.34, the subtype is of the form

𝐶′ ∀(𝑦 : 𝑈 ′′) 𝑇 ′
and we have Γ ⊢ 𝑈 <: 𝑈 ′′

. By IH we know that 𝑣 = 𝜆(𝑥 : 𝑈 ′)𝑡 and Γ ⊢ 𝑈 ′′ <: 𝑈 ′

and Γ, 𝑥 : 𝑈 ′′ ⊢ 𝑡 : 𝑇 . By (trans) we have Γ ⊢ 𝑈 <: 𝑈 ′
and by narrowing we have Γ, 𝑥 : 𝑈 ⊢ 𝑡 : 𝑇 ,

which concludes.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 35

Rule (abs) is immediate, and other rules cannot occur. □

Lemma A.36 (Canonical forms: type abstraction). If Γ ⊢ 𝑣 : 𝐶 ∀[𝑋 <: 𝑈] 𝑇 , then we have

𝑣 = 𝜆[𝑋 <: 𝑈 ′]𝑡 and Γ ⊢ 𝑈 <: 𝑈 ′
and Γ, 𝑋 <: 𝑈 ⊢ 𝑡 : 𝑇 .

Proof. Analogous to the proof of Lemma A.35. □

Lemma A.37 (Canonical forms: boxed term). If Γ ⊢ 𝑣 : 𝐶 □ 𝑇 , then 𝑣 = □ 𝑥 and Γ ⊢ 𝑥 : 𝑇 .

Proof. Analogous to the proof of Lemma A.35. □

Lemma A.38 (Variable typing inversion). If Γ ⊢ 𝑥 : 𝐶 𝑆 , then 𝑥 : 𝐶′ 𝑆 ′ ∈ Γ and Γ ⊢ 𝑆 ′ <: 𝑆
for some 𝐶′, 𝑆 ′.

Proof. By induction on the typing derivation.

Case (sub). Then Γ ⊢ 𝑥 : 𝐶′′ 𝑆 ′′ and Γ ⊢ 𝐶′′ 𝑆 ′′ <: 𝐶 𝑆 . By the IH we have Γ ⊢ 𝑥 : 𝐶′ 𝑆 ′ and
Γ ⊢ 𝑆 ′ <: 𝑆 ′′. Then by Lemma A.19 we have Γ ⊢ 𝑆 ′′ <: 𝑆 , which lets us conclude by (trans).

Case (var). Then Γ ⊢ 𝑥 : 𝐶′ 𝑆 and 𝐶 = {𝑥}. We can conclude with 𝑆 ′ = 𝑆 by (refl). □

Lemma A.39 (Variable lookup inversion). If we have both Γ ⊢ 𝜎 ∼ Δ and 𝑥 : 𝐶 𝑆 ∈ Γ,Δ, then
𝜎 (𝑥) = 𝑣 implies that Γ,Δ ⊢ 𝑣 : 𝐶 𝑆 .

Proof. By structural induction on 𝜎 . It is not possible for 𝜎 to be empty.

Otherwise, 𝜎 = 𝜎 ′ [let𝑦 = 𝑣 in[]] and for some𝑈 we have both Δ = Δ′, 𝑦 : 𝑈 and Γ,Δ′ ⊢ 𝑣 : 𝑈 .

If 𝑦 ≠ 𝑥 , we can proceed by IH as 𝑥 can also be typed in Γ,Δ′
, after which we can conclude by

weakening. Otherwise,𝑈 = 𝐶 𝑆 and we can conclude by weakening. □

Lemma A.40 (Term abstraction lookup inversion). If Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝑥 : 𝐶 ∀(𝑧 : 𝑈) 𝑇
and 𝜎 (𝑥) = 𝜆(𝑧 : 𝑈 ′)𝑡 , then Γ,Δ ⊢ 𝑈 <: 𝑈 ′

and Γ,Δ, 𝑧 : 𝑈 ⊢ 𝑡 : 𝑇 .

Proof. A corollary of Lemma A.39 and Lemma A.35. □

Lemma A.41 (Type abstraction lookup inversion). If Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝑥 : 𝐶 ∀[𝑍 <:

𝑈] 𝑇 and 𝜎 (𝑥) = 𝜆[𝑍 <: 𝑈 ′]𝑡 , then Γ,Δ ⊢ 𝑈 <: 𝑈 ′
and Γ,Δ, 𝑍 <: 𝑈 ⊢ 𝑡 : 𝑇 .

Proof. A corollary of Lemma A.39 and Lemma A.36. □

Lemma A.42 (Box lookup inversion). If Γ ⊢ 𝜎 ∼ Δ and 𝜎 (𝑥) = □ 𝑦 and Γ,Δ ⊢ 𝑥 : □ 𝑇 , then
Γ,Δ ⊢ 𝑦 : 𝑇 .

Proof. A corollary of Lemma A.39 and Lemma A.37. □

A.5.2 Soundness. In this section, we show the classical soundness theorems.

Theorem A.43 (Preservation). If we have Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝑡 : 𝑇 , then 𝜎 [𝑡] −→ 𝜎 [𝑡 ′]
implies that Γ,Δ ⊢ 𝑡 ′ : 𝑇 .

Proof. We proceed by inspecting the rule used to reduce 𝜎 [𝑡].
Case (apply). Then we have 𝑡 = 𝑒 [𝑥 𝑦] and 𝜎 (𝑥) = 𝜆(𝑧 : 𝑈)𝑠 and 𝑡 ′ = 𝑒 [[𝑧 := 𝑦]𝑠].
By Lemma A.4, for some 𝑄 we have Γ,Δ ⊢ 𝑒 : 𝑄 ⇒ 𝑇 and Γ,Δ ⊢ 𝑥 𝑦 : 𝑄 . The typing

derivation of 𝑥 𝑦 must start with an arbitrary number of (sub) rules, followed by (app). We

proceed by induction on the number of (sub) rules. In both base and inductive cases we can

only assume that Γ,Δ ⊢ 𝑥 𝑦 : 𝑄 ′
for some 𝑄 ′

such that Γ,Δ ⊢ 𝑄 ′ <: 𝑄 .
In the inductive case, Γ,Δ ⊢ 𝑥 𝑦 : 𝑄 ′

is derived by (sub), so we also have some 𝑄 ′′
such

that Γ,Δ ⊢ 𝑥 𝑦 : 𝑄 ′′
and Γ,Δ ⊢ 𝑄 ′′ <: 𝑄 ′

. We have Γ,Δ ⊢ 𝑄 ′′ <: 𝑄 by (trans), so we can

conclude by using the inductive hypothesis on Γ,Δ ⊢ 𝑥 𝑦 : 𝑄 ′′
.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

36 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

In the base case, Γ,Δ ⊢ 𝑥 𝑦 : 𝑄 ′
is derived by (app), so for some 𝑄 ′′

we have Γ,Δ ⊢ 𝑥 :

∀(𝑧 : 𝑈 ′) 𝑄 ′′
and Γ,Δ ⊢ 𝑦 : 𝑈 ′

and 𝑄 ′ = [𝑧 := 𝑦]𝑄 ′′
. By Lemma A.40 and narrowing, we

have Γ,Δ, 𝑧 : 𝑈 ′ ⊢ 𝑠 : 𝑄 ′′
. By Lemma A.30, we have Γ,Δ ⊢ [𝑧 := 𝑦]𝑠 : [𝑧 := 𝑦]𝑄 ′′

, and since

𝑄 ′ = [𝑧 := 𝑦]𝑄 ′′
, by (sub) we have Γ,Δ ⊢ [𝑧 := 𝑦]𝑠 : 𝑄 .

To conclude that 𝑡 ′ = 𝑒 [[𝑧 := 𝑦]𝑠] can be typed as 𝑇 , we use Lemma A.6.

Case (tapply), (open). As above.

Case (rename). Then we have 𝑡 = 𝑒 [let𝑥 = 𝑦 in 𝑠] and 𝑡 ′ = 𝑒 [[𝑥 := 𝑦]𝑠].
Again, by Lemma A.4 for some 𝑄 we have Γ,Δ ⊢ 𝑒 : 𝑄 ⇒ 𝑇 and Γ,Δ ⊢ let𝑥 = 𝑦 in 𝑠 : 𝑄 .
We again proceed by induction on number of (sub) rules at the start of the typing

derivation for let𝑥 = 𝑦 in 𝑠 , again only assuming that we can type the plug as some𝑄 ′
such

that 𝑄 ′ <: 𝑄 . The inductive case proceeds exactly as before.

In the base case, (let) was used to derive that Γ,Δ ⊢ let𝑥 = 𝑦 in 𝑠 : 𝑄 ′
. The premises

are Γ,Δ ⊢ 𝑦 : 𝑈 and Γ,Δ, 𝑥 : 𝑈 ⊢ 𝑠 : 𝑄 ′
and 𝑥 ∉ fv(𝑄 ′). By Lemma A.30, we have

Γ,Δ ⊢ [𝑥 := 𝑦]𝑠 : [𝑥 := 𝑦]𝑄 ′
. Because 𝑥 ∉ fv(𝑄 ′), [𝑥 := 𝑦]𝑄 ′ = 𝑄 ′

, which means that we

can again conclude by (sub) and Lemma A.6.

Case (lift). Then we have 𝑡 = 𝑒 [let𝑥 = 𝑣 in 𝑠] and 𝑡 ′ = let𝑥 = 𝑣 in 𝑒 [𝑠].
Again, by Lemma A.4 for some 𝑄 we have Γ,Δ ⊢ 𝑒 : 𝑄 ⇒ 𝑇 and Γ,Δ ⊢ let𝑥 = 𝑦 in 𝑠 : 𝑄 .
We again proceed by induction on number of (sub) rules at the start of the typing

derivation for let𝑥 = 𝑣 in 𝑠 , again only assuming that we can type the plug as some 𝑄 ′
such

that 𝑄 ′ <: 𝑄 . The inductive case proceeds exactly as before.

In the base case, (let) was used to derive that Γ,Δ ⊢ let𝑥 = 𝑣 in 𝑠 : 𝑄 ′
. The premises are

Γ,Δ ⊢ 𝑣 : 𝑈 and Γ,Δ, 𝑥 : 𝑈 ⊢ 𝑠 : 𝑄 ′
and 𝑥 ∉ fv(𝑄 ′).

By weakening of typing, we also have Γ,Δ, 𝑥 : 𝑈 ⊢ 𝑒 : 𝑄 ⇒ 𝑇 . Then by (sub) and

Lemma A.6 we have Γ,Δ, 𝑥 : 𝑈 ⊢ 𝑒 [𝑠] : 𝑇 . Since Γ,Δ ⊢ 𝑇 wf, by Barendregt 𝑥 ∉ fv(𝑇), so
by (let) we have Γ,Δ ⊢ let𝑥 = 𝑣 in 𝑒 [𝑠] : 𝑇 , which concludes.

□

Definition A.44 (Canonical store-plug split). We say that a term of the form 𝜎 [𝑡] is a canonical
split (of the entire term into store context 𝜎 and the plug 𝑡) if 𝑡 is not of the form let𝑥 = 𝑣 in 𝑡 ′.

Fact A.45. Every term has a unique canonical store-plug split, and finding it is decidable.

Lemma A.46 (Extraction of bound value). If Γ,Δ ⊢ 𝑥 : 𝑇 and ⊢ 𝜎 ∼ Δ and 𝑥 ∈ dom(Δ),
then 𝜎 (𝑥) = 𝑣 .

Proof. By structural induction on Δ. If Δ is empty, we have a contradiction. Otherwise, Δ =

Δ′, 𝑧 : 𝑇 ′
and 𝜎 = 𝜎 ′ [let 𝑧 = 𝑣 in[]] and Γ,Δ′, 𝑧 : 𝑇 ′ ⊢ 𝑣 : 𝑇 ′

. Note that Δ is the environment

matching 𝜎 and can only contain term bindings. If 𝑧 = 𝑥 , we can conclude immediately, and

otherwise if 𝑧 ≠ 𝑥 , we can conclude by IH. □

Theorem A.47 (Progress). If ⊢ 𝜎 [𝑒 [𝑡]] : 𝑇 and 𝜎 [𝑒 [𝑡]] is a canonical store-plug split, then
either 𝑒 [𝑡] = 𝑎, or there exists 𝜎 [𝑡 ′] such that 𝜎 [𝑒 [𝑡]] −→ 𝜎 [𝑡 ′].

Proof. Since 𝜎 [𝑒 [𝑡]] is well-typed in the empty environment, there clearly must be some

Δ such that ⊢ 𝜎 ∼ Δ and Δ ⊢ 𝑒 [𝑡] : 𝑇 . By Lemma A.4, we have that Δ ⊢ 𝑡 : 𝑃 for some 𝑃 . We

proceed by induction on the derivation of this derivation.

Case (var). Then 𝑡 = 𝑥 .

If 𝑒 is non-empty, 𝑒 [𝑥] = 𝑒′ [let𝑦 = 𝑥 in 𝑡] and we can step by (rename); otherwise,

immediate.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 37

Case (abs), (tabs), (box). Then 𝑡 = 𝑣 .

If 𝑒 is non-empty, 𝑒 [𝑣] = 𝑒′ [let𝑥 = 𝑣 in 𝑡] and we can step by (lift); otherwise,

immediate.

Case (app). Then 𝑡 = 𝑥 𝑦 and Δ ⊢ 𝑥 : 𝐶 ∀(𝑧 : 𝑈) 𝑇0 and Δ ⊢ 𝑦 : 𝑈 .

By Lemmas A.46 and A.35, 𝜎 (𝑥) = 𝜆(𝑧 : 𝑈 ′)𝑡 ′, which means we can step by (apply).

Case (tapp). Then 𝑡 = 𝑥 [𝑆] and Δ ⊢ 𝑥 : 𝐶 ∀[𝑍 <: 𝑆] 𝑇0.
By Lemmas A.46 and A.36, 𝜎 (𝑥) = Λ [𝑧 <: 𝑆 ′] . 𝑡 ′, which means we can step by (tapply).

Case (unbox). Then 𝑡 = 𝐶 � 𝑥 and Δ ⊢ 𝑥 : 𝐶 □ 𝐶 𝑆 .

By Lemmas A.46 and A.37, 𝜎 (𝑥) = □ 𝑦, which means we can step by (open).

Case (let). Then 𝑡 = let𝑥 = 𝑠 in 𝑡 ′ and we proceed by IH on 𝑠 , with 𝑒 [let𝑥 = [] in 𝑡 ′] as
the evaluation context.

Case (sub). By IH.

□

A.5.3 Consequences.

Lemma A.48 (Capture prediction for answers). If Γ ⊢ 𝜎 [𝑎] : 𝐶 𝑆 , then Γ ⊢ 𝜎 [𝑎] :

cv(𝜎 [𝑎]) 𝑆 and Γ ⊢ cv(𝜎 [𝑎]) <: 𝐶 .

Proof. By induction on the typing derivation.

Case (sub). Then Γ ⊢ 𝑎 : 𝐶′ 𝑆 ′ and Γ ⊢ 𝐶′ 𝑆 ′ <: 𝐶 𝑆 . By IH, Γ ⊢ 𝜎 [𝑎] : cv(𝜎 [𝑎]) 𝑆 ′ and
Γ ⊢ cv(𝜎 [𝑎]) <: 𝐶′

. By Lemma A.19, we have that Γ ⊢ 𝐶′ <: 𝐶 and Γ ⊢ 𝑆 ′ <: 𝑆 .
To conclude we need Γ ⊢ 𝜎 [𝑎] : cv(𝜎 [𝑎]) 𝑆 and Γ ⊢ cv(𝜎 [𝑎]) <: 𝐶 , which we

respectively have by subsumption and Lemma A.13.

Case (var), (abs), (tabs), (box). Then 𝜎 is empty and𝐶 = cv(𝑎). One goal is immediate, other

follows from Lemma A.14.

Case (let). Then 𝜎 = let𝑥 = 𝑣 in𝜎 ′
and Γ, 𝑥 : 𝑈 ⊢ 𝜎 ′ [𝑎] : 𝐶 𝑆 and 𝑥 ∉ 𝐶 .

By IH, Γ, 𝑥 : 𝑈 ⊢ 𝜎 ′ [𝑎] <: cv(𝜎 ′ [𝑎]) 𝑆 and Γ, 𝑥 : 𝑈 ⊢ cv(𝜎 ′ [𝑎]) <: 𝐶 .
By Lemma A.28, we have Γ ⊢ [𝑥 := cv(𝑣)] (cv(𝜎 ′ [𝑎])) <: [𝑥 := cv(𝑣)]𝐶 .
By definition, [𝑥 := cv(𝑣)] (cv(𝜎 ′ [𝑎])) = cv(let𝑥 = 𝑣 in𝜎 ′ [𝑎]), and we also already

know that 𝑥 ∉ 𝐶 .

This lets us conclude, as we have Γ ⊢ cv(let𝑥 = 𝑣 in𝜎 ′ [𝑎]) <: 𝐶 .
Other rules cannot occur.

□

Lemma A.49 (Capture prediction for terms). Let ⊢ 𝜎 ∼ Δ and Δ ⊢ 𝑡 : 𝐶 𝑆 .

Then 𝑒 [𝑡] −→∗ 𝑒 [𝜎 ′ [𝑎]] implies that Δ ⊢ cv(𝜎 ′ [𝑎]) <: 𝐶 .

Proof. By preservation, ⊢ 𝜎 ′ [𝑎] : 𝐶 𝑆 , which lets us conclude by Lemma A.48. □

A.6 Correctness of boxing
A.6.1 Relating cv and stores. We want to relate the cv of a term of the form 𝜎 [𝑡] with cv(𝑡) such
that, for some definition of ‘resolve’, we have:

cv(𝜎 [𝑡]) = resolve(𝜎, cv(𝑡))
Let us consider term of the form 𝜎 [𝑡] and a store 𝜎 of the form let𝑥 = 𝑣 in𝜎 ′

. There are two rules

that could be used to calculate cv(let𝑥 = 𝑣 in𝜎 ′):
cv(let𝑥 = 𝑣 in 𝑡) = cv(𝑡) if 𝑥 ∉ cv(𝑡)
cv(let𝑥 = 𝑠 in 𝑡) = cv(𝑠) ∪ cv(𝑡)\𝑥

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

38 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Observe that since we know that 𝑥 is bound to a value, we can reformulate these rules as:

cv(let𝑥 = 𝑣 in 𝑡) = [𝑥 := cv(𝑣)] cv(𝑡)
Which means that we should be able to define ‘resolve’ with a substitution. We will call this

substitition a store resolver, and we define it as:

resolver(let𝑥 = 𝑣 in𝜎) = [𝑥 := cv(𝑣)] ◦ resolver(𝜎)
resolver([]) = 𝑖𝑑

Importantly, note that we use composition of substitutions. We have:

resolver(let𝑥 = 𝑎 in let𝑦 = 𝑥 in[]) ≡ [𝑥 := {𝑎}, 𝑦 := {𝑎}]
With the above, we define resolve as:

resolve(𝜎,𝐶) = resolver(𝜎) (𝐶)
This definition satisfies our original desired equality with cv:

Fact A.50. For all terms 𝑡 of the form 𝜎 [𝑠], we have cv(𝑡) = resolve(𝜎, cv(𝑠))

A.6.2 Relating cv and evaluation contexts. We now relate cv to evaluation contexts 𝑒 . First, note

that by definition of cv we have:

Fact A.51. For all terms 𝑡 of the form let𝑥 = 𝑠 in 𝑡 ′ such that 𝑠 is not a value, we have cv(𝑡) =
𝑐𝑣 (𝑠) ∪ cv(𝑡 ′) \ 𝑥 .

Accordingly, we extend cv to evaluation contexts (cv(𝑒)) as follows:
cv(let𝑥 = 𝑒 in 𝑡) = cv(𝑒) ∪ cv(𝑡) \ 𝑥

cv([]) = {}
We then have:

Fact A.52. For all terms 𝑡 of the form 𝑒 [𝑠] such that 𝑠 is not a value, we have cv(𝑡) = cv(𝑒) ∪cv(𝑠).

A.6.3 Relating cv to store and evaluation context simultaneously. Given our definition of ‘resolve’

and cv(𝑒), we have:

Fact A.53. Let 𝜎 [𝑒 [𝑡]] be a term such that 𝑡 is not a value. Then:

cv(𝜎 [𝑒 [𝑡]]) = resolve(𝜎, cv(𝑒) ∪ cv(𝑡))

The proof proceeds by induction on 𝜎 and 𝑒 , using Facts A.50 and A.52.

A.6.4 Correctness of cv.

Definition A.54 (Platform environment).

Γ is a platform environment if for all 𝑥 ∈ dom(Γ) we have 𝑥 : {∗} 𝑆 ∈ Γ for some 𝑆 .

Lemma A.55 (Inversion of subcapturing under platform environment).

If Γ is a platform environment and Γ ⊢ 𝐶 <: 𝐷 , then either 𝐶 ⊆ 𝐷 or ∗ ∈ 𝐷 .

Proof. By induction on the subcapturing relation. Case (sc-elem) trivially holds. Case (sc-set)

holds by repeated IH. In case (sc-var), we have 𝐶 = {𝑥} and 𝑥 : 𝐶′ 𝑆 ∈ Γ. Since Γ is a platform

environment, we have 𝐶′ = {∗}, which means that the other premise of (sc-var) is Γ ⊢ {∗} <: 𝐷 .
Since Γ is well-formed, ∗ ∉ dom(Γ), which means that we must have ∗ ∈ 𝐷 . □

Lemma A.56 (Strengthening of subcapturing). If Γ, Γ′ ⊢ 𝐶 <: 𝐷 and 𝐶 ⊆ dom(Γ), then we

must have Γ ⊢ 𝐶 <: 𝐷 .

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 39

Proof. First, we consider that if ∗ ∈ 𝐷 , we trivially have the desired goal. If ∗ ∉ 𝐷 , we proceed

by induction on the subcapturing relation. Case (sc-elem) trivially holds and case (sc-set) holds by

repeated IH.

In case (sc-var), we have 𝐶 = {𝑥}, 𝑥 : 𝐶′ 𝑆 ∈ Γ, Γ′. This implies that Γ = Γ1, 𝑥 : 𝐶′ 𝑆, Γ2 (as
𝑥 ∉ dom(Γ)). Since Γ, Γ′ is well-formed, we must have Γ1 ⊢ 𝐶′ wf. Since we already know ∗ ∉ 𝐷 ,

then we must also have ∗ ∉ 𝐶′
, which then leads to 𝐶′ ⊆ dom(Γ1). This in turn means that by IH

and weakening we have Γ ⊢ 𝐶′ <: 𝐷 , and since we also have 𝑥 : 𝐶′ 𝑆 ∈ Γ, we can conclude by

(sc-var). □

Then we will need to connect it to subcapturing, because the keys used to open boxes are

supercaptures of the capability inside the box. We want:

LemmaA.57. Let Γ be a platform environment, Γ ⊢ 𝜎 ∼ Δ and Γ,Δ ⊢ 𝐶1 <: 𝐶2. Then resolve(𝜎,𝐶1) ⊆
resolve(𝜎,𝐶2).

Proof. By induction on 𝜎 . If 𝜎 is empty, we have resolve(𝜎,𝐶1) = 𝐶1, likewise for 𝐶2, and we

can conclude by Lemma A.55.

Otherwise, 𝜎 = 𝜎 ′ [let𝑥 = 𝑣 in[]] and Δ = Δ′, 𝑥 : 𝐷𝑥 𝑆𝑥 for some 𝑆𝑥 . Let 𝜃 = resolver(𝜎).
We proceed by induction on the subcapturing derivation. Case (sc-elem) trivially holds and case

(sc-set) holds by repeated IH.

In case (sc-var), we have 𝐶1 = {𝑦} and 𝑦 : 𝐷𝑦 𝑆𝑦 ∈ Γ,Δ for some 𝑆𝑦 , and Γ,Δ ⊢ 𝐷𝑦 <: 𝐶2.

We must have Γ,Δ′ ⊢ 𝐷𝑦 wf and so we can strengthen subcapturing to Γ,Δ′ ⊢ 𝐷𝑦 <: 𝐶2, which

by IH gives us resolver(𝜎 ′) (𝐷𝑦) ⊆ resolver(𝜎 ′) (𝐶2). By definition we have 𝜃 = resolver(𝜎) =

resolver(𝜎 ′) ◦ [𝑥 := cv(𝑣)]. Since by well-formedness 𝑥 ∉ 𝐷𝑦 , we now have:

𝜃𝐷𝑦 ⊆ 𝜃𝐶2

By Lemma A.39 and Lemma A.48, we must have Γ,Δ ⊢ cv(𝑣) <: 𝐷𝑦 . Since Γ,Δ ⊢ cv(𝑣) wf,
we can strengthen this to Γ,Δ ⊢ cv(𝑣) <: 𝐷𝑦 . By outer IH this gives us resolver(𝜎 ′) (cv(𝑣)) ⊆
resolver(𝜎 ′) (𝐷𝑦). Since 𝑥 ∉ cv(𝑣) ∪ 𝐷𝑦 , we have:

𝜃 cv(𝑣) ⊆ 𝜃𝐷𝑦

Which means we have 𝜃 cv(𝑣) ⊆ 𝜃𝐶2 and we can conclude by 𝜃 cv(𝑣) = 𝜃 {𝑥}, since:
𝜃 {𝑥} = (resolver(𝜎 ′) ◦ [𝑥 := cv(𝑣)]) ({𝑥}) = resolver(𝜎 ′) (cv(𝑣))

𝜃 cv(𝑣) = resolver(𝜎 ′) (cv(𝑣)) (since 𝑥 ∉ cv(𝑣))
□

A.6.5 Core lemmas.

Lemma A.58 (Program authority preservation). Let Ψ[𝑡] be a well-typed program such that

Ψ[𝑡] −→ Ψ[𝑡 ′]. Then cv(𝑡 ′) ⊆ cv(𝑡).

Proof. By inspection of the reduction rule used.

Case (apply). Then 𝑡 = 𝜎 [𝑒 [𝑥 𝑦]] and 𝑡 ′ = 𝜎 [𝑒 [[𝑧 := 𝑦]𝑠]]. Note that our goal is then:
resolver(𝜎) (cv(𝑒) ∪ cv([𝑧 := 𝑦]𝑠)) ⊆ resolver(𝜎) (cv(𝑒) ∪ cv(𝑥 𝑦))

If we have 𝑥 ∈ dom(Ψ), then Ψ(𝑥) = 𝜆(𝑧 : 𝑈) 𝑠 . By definition of platform, the lambda is

closed and we have fv(𝑠) ⊆ {𝑧}, which in turn means that cv([𝑧 := 𝑦]𝑠) ⊆ {𝑦} ⊆ cv(𝑥 𝑦).
This satisfies our goal.

Otherwise, we have 𝑥 ∈ dom(𝜎) and 𝜎 (𝑥) = 𝜆(𝑧 : 𝑈) 𝑠 . Since 𝑥 is bound in 𝜎 , we have

resolver(𝜎) (cv(𝜆(𝑧 : 𝑈) 𝑠) ∪ {𝑦}) ⊆ resolver(𝜎) (cv(𝑥 𝑦))). Since cv([𝑧 := 𝑦]𝑠) ⊆ cv(𝜆(𝑧 :

𝑈) 𝑠) ∪ {𝑦}, our goal is again satisfied.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

40 Odersky, Boruch-Gruszecki, Lee, Brachthäuser, and Lhoták

Case (tapply). Analogous reasoning.

Case (open). Then 𝑡 = 𝜎 [𝑒 [𝐶 � 𝑥]] and 𝑡 ′ = 𝜎 [𝑒 [𝑧]]. We must have 𝑥 ∈ dom(𝜎) and
𝜎 (𝑥) = □ 𝑧, since all values bound in a platform must be closed and a box form cannot be

closed. Since Ψ[𝑡] is a well-typed program, there must exist some Γ,Δ such that Γ is a

platform environment and ⊢ Ψ[𝜎] ∼ Γ,Δ.
If 𝑧 ∈ dom(𝜎), then by Lemma A.39 and Lemma A.42 we have Γ,Δ ⊢ 𝑧 : 𝐶 𝑆𝑧 for some 𝑆𝑧 .

By straightforward induction on the typing derivation, we then must have Γ,Δ ⊢ {𝑧} <: 𝐶 .
Then by Lemma A.57 we have resolver(𝜎) ({𝑧}) ⊆ resolver(𝜎) (𝐶), which lets us conclude

by an argument similar to the (apply) case.

Otherwise, 𝑧 ∈ dom(Ψ). Here we also have Γ,Δ ⊢ {𝑧} <: 𝐶 , which implies we must have

𝑧 ∈ 𝐶 , so we have cv(𝑧) ⊆ cv(𝐶 � 𝑥) and can conclude by a similar argument as in the

(apply) case.

Case (rename), (lift). The lemma is clearly true since these rules only shift subterms of 𝑡 to

create 𝑡 ′.
□

Lemma A.59 (Single-step program trace prediction). Let Ψ[𝑡] be a well-typed program such

that Ψ[𝑡] −→ Ψ[𝑡 ′]. Then the primitive capabilities used during this reduction are a subset of cv(𝑡).

Proof. By inspection of the reduction rule used.

Case (apply). Then 𝑡 = 𝜎 [𝑒 [𝑥 𝑦]]. If 𝑥 ∈ dom(𝜎), the lemma vacuously holds. Otherwise,

𝑥 ∈ dom(Ψ) \ dom(𝜎). From the definition of cv, we have {𝑥} \ dom(𝜎) ⊆ cv(𝑡). Since 𝑥 is

bound in Ψ, we then have 𝑥 ∈ cv(𝑡), which concludes.

Case (tapply). Analogous reasoning.

Case (open), (rename), (lift). Hold vacuously, since no capabilities are used by reducing

using these rules.

□

Lemma A.60 (Program trace prediction). Let Ψ[𝑡] be a well-typed program such that

Ψ[𝑡] −→∗ Ψ[𝑡 ′]. Then the primitive capabilities used during this reduction are a subset of cv(𝑡).

Proof. By IH, Single-step program trace prediction and authority preservation. □

A.7 Avoidance
Here, we restate Lemma 3.3 and prove it.

Lemma A.61. Consider a term let𝑥 = 𝑠 in 𝑡 in an environment Γ such that 𝐸 ⊢ 𝑠 : 𝐶𝑠 𝑈 is the most

specific typing for 𝑠 in Γ and Γ, 𝑥 : 𝐶𝑠 𝑈 ⊢ 𝑡 : 𝑇 is the most specific typing for 𝑡 in the context of the

body of the let, namely Γ, 𝑥 : 𝐶𝑠 𝑈 . Let 𝑇 ′
be constructed from 𝑇 by replacing 𝑥 with 𝐶𝑠 in covariant

capture set positions and by replacing 𝑥 with the empty set in contravariant capture set positions. Then

for every type 𝑉 avoiding 𝑥 such that Γ, 𝑥 : 𝐶𝑠 𝑆 ⊢ 𝑇 <: 𝑉 , Γ ⊢ 𝑇 ′ <: 𝑉 .

Proof. We will construct a subtyping derivation showing that 𝑇 ′ <: 𝑉 . Proceed by structural

induction on the subtyping derivation for 𝑇 <: 𝑉 . Since 𝑇 ′
has the same structure as 𝑇 , most of the

subtyping derivation carries over directly except for the subcapturing constraints in (capt).

In this case, in covariant positions, whenever we have 𝐶𝑇 <: 𝐶𝑉 for a capture set 𝐶𝑇 from 𝑇

and a capture set 𝐶𝑉 from 𝑉 , we need to show that that ⊢ [𝑥 := 𝐶𝑠]𝐶𝑇 <: 𝐶𝑉 . Conversely, in

contravariant positions, whenever we have𝐶𝑉 <: 𝐶𝑇 , we need to show that𝐶𝑉 <: [𝑥 := {}]𝐶𝑇 . For

the covariant case, since 𝑥 ∈ 𝐶𝑇 but not in𝐶𝑉 , by inverting the subcapturing relation𝐶𝑇 <: 𝐶𝑉 , we

obtain 𝐶𝑠 <: 𝐶𝑉 . Hence [𝑥 := 𝐶𝑠]𝐶𝑇 <: 𝐶𝑉 , as desired.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

Keeping Track of Capabilities 41

The more difficult case is the contravariant case, when we have 𝐶𝑉 <: 𝐶𝑇 . Here, however, we

have that 𝐶𝑉 <: [𝑥 := {}]𝐶𝑇 by structural induction on the subcapturing derivation as 𝑥 never

occurs on the left hand side of the subcapturing relation as 𝑉 avoids 𝑥 . □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: October 2023.

	Abstract
	1 Introduction
	2 Informal Discussion
	2.1 Capability Hierarchy
	2.2 Function Types
	2.3 Capture Checking of Closures
	2.4 Subtyping and Subcapturing
	2.5 Capture Tunneling
	2.6 Escape Checking
	2.7 Escape Checking of Mutable Variables

	3 The CC<: calculus
	3.1 Subcapturing
	3.2 Subtyping
	3.3 Typing
	3.4 Well-formedness
	3.5 Evaluation

	4 Metatheory
	4.1 Correctness of boxing

	5 Examples
	5.1 Church-Encoded Lists
	5.2 Stack Allocation
	5.3 Collections

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Proof devices
	A.2 Properties of Evaluation Contexts and Stores
	A.3 Properties of Subcapturing
	A.4 Substitution
	A.5 Main Theorems – Soundness
	A.6 Correctness of boxing
	A.7 Avoidance

