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Type systems usually characterize the shape of values but not their free variables. However, many desirable
safety properties could be guaranteed if one knew the free variables captured by values. We describe CC«.g,
a calculus where such captured variables are succinctly represented in types, and show it can be used to
safely implement effects and effect polymorphism via scoped capabilities. We discuss how the decision to track
captured variables guides key aspects of the calculus, and show that CC«.5 admits simple and intuitive types
for common data structures and their typical usage patterns. We demonstrate how these ideas can be used to
guide the implementation of capture checking in a practical programming language.

1 INTRODUCTION

Effects are aspects of computation that go beyond describing shapes of values and that we still want
to track in types. What exactly is modeled as an effect is a question of language or library design.
Some possibilities are: reading or writing to mutable state outside a function, throwing an exception
to signal abnormal termination of a function, I/O including file operations, network access, or user
interaction, non-terminating computations, suspending a computation e.g., waiting for an event, or
using a continuation for control operations.

Despite hundreds of published papers there is comparatively little adoption of static effect
checking in programming languages. The few designs that are widely implemented (for instance
Java’s checked exceptions or monadic effects in some functional languages) are often critiqued for
being both too verbose and too rigid. The problem is not lack of expressiveness — systems have
been proposed and implemented for many quite exotic kinds of effects. Rather, the problem is
simple lack of usability and flexibility, with particular difficulties in describing polymorphism. This
leads either to overly complex definitions, or to the requirement to duplicate large bodies of code.

Classical type-systematic approaches fail since effects are inherently transitive along the edges
of the dynamic call-graph: A function’s effects include the effects of all the functions it calls,
transitively. Traditional type and effect systems have no lightweight mechanism to describe this
behavior. The standard approach is either manual specialization along specific effect classes, which
means large-scale code duplication, or quantifiers on all definitions along possible call graph edges
to account for the possibility that some call target has an effect, which means large amounts of
boilerplate code. Arguably, it is this problem more than any other that has so far hindered wide
scale application of effect systems.

A promising alternative that circumvents this problem is to model effects via capabilities
[Brachthiuser et al. 2020a; Gordon 2020; Liu 2016; Marino and Millstein 2009; Osvald et al. 2016].
Capabilities exist in many forms, but we will restrict the meaning here to simple object capabilities
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represented as regular program variables. For instance, consider the following two formulations of
a method in Scala! which are morally equivalent:

def f(): T throws E
def f()(using ct: CanThrow[E]): T

The first version looks like it describes an effect: Function f returns a T, or it might throw exception
E. The effect is mentioned in the return type throws[T, EJ] where the throws is written infix.

The second version expresses analogous information as a capability: Function f returns a value
of type T, provided it can be passed a capability ct of type CanThrow[T]. The capability is modelled
as a parameter. To avoid boilerplate, that parameter is synthesized automatically by the compiler at
the call site assuming a matching capability is defined there. This is expressed by a using keyword,
which indicates that a parameter is implicit in Scala 3 (Scala 2 would have used the implicit
keyword instead). The fact that capabilities are implicit rather than explicit parameters helps
with conciseness and readability of programs, but is not essential for understanding the concepts
discussed in this paper.

Aside: The link between the “effect” and the “capability” version of f can be made more precise
by means of implicit function types [Odersky et al. 2018]. It is embodied in the following definition
of the throws type:

infix type throws[T, E <: Exception] = CanThrow[E] ?=> T

The implicit function type CanThrow[E] ?=> T represents functions from CanThrow[E] to T that
are applied implicitly to arguments synthesized by the compiler. This gives a direct connection
between the effect view based on the throws type and the capability view based on its expansion.

An important benefit of this switch from effects to capabilities is that it gives us polymorphism
for free. For instance, consider the map function in class List[A]. If we wanted to take effects into
account, it would look like this:

def map[B, EI(f: A -> B eff E): List[B] eff E

Here, A -> B eff E is hypothetical syntax for the type of functions from A to B that can have
effect E. While looking reasonable in the small, this scheme quickly becomes unmanageable, if we
consider that every higher-order function has to be expanded that way and, furthermore, that in
an object-oriented language almost every method is a higher-order function [Cook 2009]. Indeed,
many designers of programming languages with support for effect systems agree that programmers
should ideally not be confronted with explicit effect quantifiers [Brachthduser et al. 2020a; Leijen
2017; Lindley et al. 2017].
On the other hand, here is the type of map if we represent effects with capabilities.

def map(f: A => B): List[B]

Interestingly, this is exactly the same as the type of map in current Scala, which does not track effects!
In fact, compared to effect systems, we now decompose the space of possible effects differently: map
is classified as pure since it does not produce any effects in its own code, but when analyzing an
application of map to some argument, the capabilities required by the argument are also capabilities
required by the whole expression. In that sense, we get effect polymorphism for free.

The reason this works is that in an effects-as-capabilities discipline, the type A => B represents
the type of impure function values that can close over arbitrary effect capabilities. (Alongside, we
also define a type of pure functions A -> B that are not allowed to close over capabilities.)

1Scala 3.1 with language import saferExceptions enabled.
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This seems almost too good to be true, and indeed there is a catch: It now becomes necessary to
reason about capabilities captured in closures, ideally by representing such knowledge in a type
system.

class ToolLarge extends Exception def f(x: Int)
(using CanThrow[TooLargel): Int =
def f(x: Int): Int throws Toolarge = if x < limit then x * x
if x < limit then x * x else throw Toolarge()

else throw Toolarge()
val xs: List[Int]

val xs: List[Int] try xs.map(x =>
try xs.map(x => f(x)) f(x)(using new CanThrow[TooLargel))
catch case ToolLarge => Nil catch case ToolLarge => Nil

Fig. 1. Exception handling: source (left) and compiler-generated code (right)

To see why, consider that effect capabilities are often scoped and therefore have a limited lifetime.
For instance a CanThrow[E] capability would be generated by a try expression that catches E. It is
valid only as long as the try is executing. Figure 1 shows an example of capabilities for checked
exceptions, both as source syntax on the left and with compiler-generated implicit capability
arguments on the right. The following slight variation of this program would throw an unhandled
exception since the function f is now evaluated only when the iterator’s next method is called,
which is after the try handling the exception has exited.

val it =

try xs.iterator.map(f)

catch case ToolLarge => Iterator.empty
it.next()

A question answered in this paper is how to rule out Iterator’s lazy map statically while still
allowing List’s strict map. A large body of research exists that could address this problem by
restricting reference access patterns. Relevant techniques include linear types [Wadler 1990], rank 2
quantification [Launchbury and Sabry 1997], regions [Grossman et al. 2002; Tofte and Talpin 1997],
uniqueness types [Barendsen and Smetsers 1996], ownership types [Clarke et al. 1998; Noble et al.
1998], and second class values [Osvald et al. 2016]. A possible issue with many of these approaches
is their relatively high notational overhead, in particular when dealing with polymorphism.

The approach we pursue here is different. Instead of restricting certain access patterns a priori,
we focus on describing what capabilities are possibly captured by values of a type. At its core there
are the following two interlinked concepts:

o A capturing type is of the form {cy,...,c,} T where T is a type and {cy, ..., c,} is a capture
set of capabilities.

o A capability is a parameter or local variable that has as type a capturing type with non-empty
capture set. We call such capabilities tracked variables.

Every capability gets its authority from some other, more sweeping capabilities which it captures.
The most sweeping capability, from which ultimately all others are derived, is “+”, the universal
capability.
As an example how capabilities are defined and used, consider a typical try-with-resources pattern:
def usingFile[T](name: String, op: ({*} OutputStream) => T): T =
val f = new FileOutputStream(name)
val result = op(f)
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f.close()
result

val xs: List[Int] =
def good = usingFile("out", f => xs.foreach(x => f.write(x)))
def fail =

val later = usingFile("out",
f => (y: Int) => xs.foreach(x => f.write(x + y)))
later (1)

The usingFile method runs a given operation op on a freshly created file, closes the file, and
returns the operation’s result. The method enables an effect (writing to a file) and limits its validity
(to until the file is closed). Function good invokes usingFile with an operation that writes each
element of a given list xs to the file. By contrast, function fail represents an illegal usage: It
invokes usingFile with an operation that returns a function that, when invoked, will write list
elements to the file. The problem is that the writing happens in the application later (1) when
the file has already been closed.

We can accept the first usage and reject the second by marking the output stream passed to op as
a capability. This is done by prefixing its type with {*}. Our prototype implementation of capture
checking will then reject the second usage with an error message.
This example used a capability parameter that was directly derived from *. But capabilities can
also be derived from other non-universal capabilities. For instance:

def usinglLogFile[T1(f: {*} OutputStream, op: ({f} Logger) => T): T =
op(Logger (f))

The usinglogFile method takes an output stream (which is a capability) and an operation, which
gets passed a Logger. The Logger capability is derived from the output stream capability, as can
be seen from its type {f} Logger.

This paper develops a capture calculus, CC <., as a foundational type system that allows reasoning
about scoped capabilities. By sketching a prototype language design based on this calculus, we argue
that it is expressive enough to support a wide range of usage patterns with very low notational
overhead. The paper makes the following specific contributions.

e We define a simple yet expressive type system for tracking captured capabilities in types.
The calculus extends F.. with capture sets of capabilities.

e We prove progress and preservation of types relative to a small-step evaluation semantics. We
also prove a capture prediction lemma that states that capture sets in types over-approximate
captured variables in runtime values.

e We illustrate the practical applicability of the calculus with a number of examples that have
been checked by a prototype capture checker implemented within the Scala 3 compiler.

The presented design is at the same time simple in theory and concise and flexible in its practical
application. We demonstrate that the following elements are essential for achieving good usability:

e Use reference-dependent typing, where a formal function parameter stands for the potential
references captured by its argument [Brachthiuser et al. 2022; Odersky et al. 2021]. This
avoids the need to introduce separate binders for capabilities or effects. Technically, this
means that references (but not general terms) can form part of types as members of capture
sets. A similar approach is taken in the path-dependent typing discipline of DOT [Amin et al.
2016; Rompf and Amin 2016] and by reachability types for alias checking [Bao et al. 2021].
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e Employ a subtyping discipline that mirrors subsetting of capabilities and that allows capa-
bilities to be refined or abstracted. Subtyping of capturing types relies on a new notion of
subcapturing that encompasses both subsetting (smaller capability sets are more specific than
larger ones) and derivation (a capability singleton set is more specific than the capture set
of the capability’s type). Both dimensions are essential for a flexible modelling of capability
domains.

e Limit propagation of capabilities in instances of generic types where they cannot be accessed
directly. This is achieved by boxing types when they enter a generic context and unboxing
on every use site [Brachthiuser et al. 2022].

Whereas many of our motivating examples describe applications in effect checking, the formal
treatment presented here does not mention effects. In fact, the effect domains are intentionally kept
open since they are orthogonal to the aim of the paper. Effects could be exceptions, file operations
or region allocations, but also algebraic effects, IO, or any sort of monadic effects. To express more
advanced control effects, one usually needs to add continuations to the operational semantics, or
use an implicit translation to the continuation monad. In short, capabilities can delimit what effects
can be performed at any point in the program but they by themselves don’t perform an effect
[Brachthiuser et al. 2020a; Gordon 2020; Liu 2016; Marino and Millstein 2009; Osvald et al. 2016].
For that, one needs a library or a runtime system that would be added as an extension of CC. g .
Since CC. g is intended to work with all such effect extensions, we refrain from adding a specific
extension to its operational semantics.

The version of CC.n presented here evolved from a system that was originally proposed to
make exception checking safe [Odersky et al. 2021]. The earlier paper described a way to encode
information about potentially raised exceptions as object capabilities passed in parameters. It noted
that the proposed system is not completely safe since capabilities can escape in closures and it
hypothesized a possible way to fix the problem by presenting a draft of what became CC.5 . At
the time, the meta theory of the proposed system was not worked out yet and the progress and
preservation properties were left as conjectures. The present paper presents a fully worked-out
meta theory with proofs of type soundness as well as a semantic characterization of capabilities.
There are some minor differences in the operational semantics, which were necessary to make a
progress theorem go through. We also present a range of use cases outside of exception handling,
demonstrating the broad applicability of the calculus.

The rest of this paper is organized as follows. Section 2 explains and motivates the core elements
of our calculus. Section 3 presents CC.. . Section 4 lays out its meta-theory. Section 5 illustrates
the expressiveness of typing disciplines based on the calculus in examples. Section 6 discusses
related work and Section 7 concludes.

2 INFORMAL DISCUSSION

This section motivates and discusses some of the key aspects of capture checking. All examples are
written in an experimental language extension of Scala 3 [Scala 2022a] and were compiled with our
prototype implementation of a capture checker [Scala 2022b].

2.1 Capability Hierarchy

We have seen in the intro that every capability except * is created from some other capabilities
which it retains in the capture set of its type. Here is an example that demonstrates this principle:

class FileSystem
class Logger(fs: {*} FileSystem):
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def log(s: String): Unit = ... // Write to a log file, using ~fs~

def test(fs: {*} FileSystem): {fs} LazylList[Int] =
val 1: {fs} Logger = new Logger(fs)
l.log("hello_world!")
val xs: {1} LazylList[Int] =
LazylList.from(1)
.map { 1 =>
l.log(s"computing_elem_#_$i")
i x i

XS

Here, the test method takes a FileSystem as a parameter. f's is a capability since its type has a
non-empty capture set. The capability is passed to the Logger constructor and retained as a field in
class Logger. Hence, the local variable 1 has type {fs} Logger: it is a Logger which retains the
f's capability.

The second variable defined in test is xs, a lazy list that is obtained from LazyList.from(1)
by logging and mapping consecutive numbers. Since the list is lazy, it needs to retain the reference
to the logger 1 for its computations. Hence, the type of the list is {1} LazyList[Int]. On the
other hand, since xs only logs but does not do other file operations, it retains the f's capability only
indirectly. That’s why f's does not show up in the capture set of xs.

Capturing types come with a subtype relation where types with “smaller” capture sets are
subtypes of types with larger sets (the subcapturing relation is defined in more detail below). If a
type T does not have a capture set, it is called pure, and is a subtype of any capturing type that adds
a capture set to T.

2.2 Function Types

The function type A => B stands for a function that can capture arbitrary capabilities. We call such
functions impure. By contrast, the new single arrow function type A -> B stands for a function
that cannot capture any capabilities, or otherwise said, is pure. One can add a capture set in front
of an otherwise pure function. For instance, {c, d} A -> B would be a function that can capture
capabilities ¢ and d, but no others.

The impure function type A => B is treated as an alias for {*} A -> B. That is, impure functions
are functions that can capture anything.

Function types and captures both associate to the right, so {c} A -> {d} B -> C is the same as
{c} (A > {d} (B -> C)).

Contrast with ({c} A) -> ({d} B) -> C which is a curried pure function over argument types
that can capture c and d, respectively.

Note. Like other object-functional languages, Scala distinguishes between functions and methods
(which are defined using def). Functions are values whereas methods represent pieces of code that
logically form part of the enclosing object. The type system treats method signatures and function
types separately: A function type is treated as an object type with a single apply method. Methods
are converted to functions by eta expansion, i.e. the unapplied method reference m is transparently
converted to the function value x => m(x).

Since methods are not values in Scala, they never capture anything directly. Therefore, the
distinctions between pure vs impure function types do not apply to methods. The capabilities
captured by a method would show up in the object closure of which the method forms part.
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2.3 Capture Checking of Closures

If a closure refers to capabilities in its body, it captures these capabilities in its type. For instance,
consider:

def test(fs: FileSystem): {fs} String -> Unit =
(x: String) => Logger(fs).log(x)

Here, the body of test is a lambda that refers to the capability fs, which means that f's is retained
in the lambda. Consequently, the type of the lambda is {fs} String -> Unit.

Note. On the term level, function values are always written with => (or ?=> for context functions).
There is no syntactic distinction for pure vs impure function values. The distinction is only made
in their types.

A closure also captures all capabilities that are captured by the functions it calls. For instance, in

def test(fs: FileSystem) =
def f() = (x: String) => Logger(fs).log(x)
def g() fO
g

the result of test has type {fs} String -> Unit even though function g itself does not refer to
fs.

2.4 Subtyping and Subcapturing

Capturing influences subtyping. As usual we write T; <: T to express that the type T; is a subtype
of the type T3, or equivalently, that T; conforms to T,. An analogous subcapturing relation applies
to capture sets. If C; and C, are capture sets, we write C; <: C, to express that C; is covered by Cs,
or, swapping the operands, that C; covers C;.

Subtyping extends as follows to capturing types:

e Pure types are subtypes of capturing types. That is, T <: CT, for any type T, capturing set C.
e For capturing types, smaller capture sets produce subtypes: C; Ty <: C2 T, if C; <: C; and
Tl <: TZ.
A subcapturing relation C; <: C; holds if C; accounts for every element c in C;. This means one of
the following two conditions must be true:

® Cc Cz,
e (’s type has capturing set C and C, accounts for every element of C (that is, C <: Cy).

Example. Given
fs: {*} FileSystem
ct: {*} CanThrow[Exception]
1 : {fs} Logger

we have

{1} <: {fs} <: {*}
{fs} <: {fs, ct} <: {*}
{ct} <: {fs, ct} <: {*}

The set consisting of the root capability {*} covers every other capture set. This is a consequence
of the fact that, ultimately, every capability is created from *.
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2.5 Capture Tunneling

Next, we discuss how type-polymorphism interacts with reasoning about capture. To this end,
consider the following simple definition of a Pair class:

class Pair[+A, +BJ(x: A, y: B):
def fst: A = x
def snd: B =y

What happens if we pass arguments to the constructor of Pair that capture capabilities?

def x: {ct} Int -> String
def y: {fs} Logger
def p = Pair(x, y)

Here the arguments x and y close over different capabilities ct and f's, which are assumed to be in
scope. So what should the type of p be? Maybe surprisingly, it will be typed as:

def p: {} Pair[{ct} Int -> String, {fs} Logger] = Pair(x, y)

That is, the outer capture set is empty and does neither mention ct nor f's, even though the value
Pair(x, y) does capture them. So why don’t they show up in its type at the outside?

While assigning p the capture set {ct, fs} would be sound, types would quickly grow inaccurate
and unbearably verbose. To remedy this, CC..; performs capture tunneling. Once a type variable
is instantiated to a capturing type, the capture is not propagated beyond this point. On the other
hand, if the type variable is instantiated again on access, the capture information “pops out” again.

Even though p is technically untracked because its capture set is empty, writing p. fst would
record a reference to the captured capability ct. So if this access was put in a closure, the capability
would again form part of the outer capture set. E.g.,

() => p.fst : {ct} () -> {ct} Int -> String

In other words, references to capabilities “tunnel through” generic instantiations—from creation to
access; they do not affect the capture set of the enclosing generic data constructor applications. As
mentioned above, this principle plays an important part in making capture checking concise and
practical. To illustrate, let us take a look at the following example:

def mapFirst[A,B,C](p: Pair[A,B], f: A => C): Pair[C,B] =
Pair(f(p.x), p.y)

Relying on capture tunneling, neither the types of the parameters to mapFirst, nor its result type
need to be annotated with capture sets. Intuitively, the capture sets do not matter for mapFirst,
since parametricity forbids it from inspecting the actual values inside the pairs. If not for capture
tunneling, we would need to annotate p as {*} Pair[A,B], since both A and B and through them,
p can capture arbitrary capabilities. In turn, this means that for the same reason, without tunneling
we would also have {*} Pair[C,B] as the result type. This is of course unacceptably inaccurate.

Section 3 describes the foundational theory on which capture checking is based. It makes
tunneling explicit through so-called box and unbox operations. Boxing hides a capture set and
unboxing recovers it. The capture checker inserts virtual box and unbox operations based on actual
and expected types similar to the way the type checker inserts implicit conversions. Boxing and
unboxing has no runtime effect, so the insertion of these operations is only simulated, but not kept
in the generated code.
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2.6 Escape Checking

Following the principle of object capabilities, the universal capability * should conceptually only
be available as a parameter to the main program. Indeed, if it was available everywhere, capability
checking would be undermined since one could mint new capabilities at will. In line with this
reasoning, some capture sets are restricted and must not contain the universal capability.

Specifically, if a capturing type is an instance of a type variable, that capturing type is not allowed
to carry the universal capability {*}.2 There is a connection to tunneling here. The capture set of a
type has to be present in the environment when a type is instantiated from a type variable. But * is
not itself available as a global entity in the environment. Hence, this should result in an error.

Using this principle, we can show why the introductory example in Section 1 reported an error.
To recall, function usingFile was declared like this:

def usingFile[T]l(name: String, op: ({*} FileOutputStream) => T): T =
The capture checker rejects the illegal definition of later

val later = usingFile("out",
f => (y: Int) => xs.foreach(x => f.write(x + y)))

with the following error message

[ val later = usingFile("out", f => (y: Int) => xs.foreach(x => f.write(x + y)))

| AAAAAAAAAAAAAAAAAAAAAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

|The expression's type {*} Int -> Unit is not allowed to capture the root capability “*~
|This usually means that a capability persists longer than its allowed lifetime.

This error message was produced by the following reasoning steps:

e Parameter f has type {*} FileOutputStream, which makes it a capability.
e Therefore, the type of the expression
(y: Int) => xs.foreach(x => f.write(x + y))

is {f} Int -> Unit.

e Consequently, we assign the whole closure passed to usingFile the dependent function
type (f: {*} FileOutputStream) -> {f} Int -> Unit.

o The expected type of the closure is a simple, parametric, impure function type
({*} FileOutputStream) => T, for some instantiation of the type variable T.

e We cannot instantiate T with {f} Int -> Unit since the expected function type is non-
dependent. The smallest supertype that matches the expected type is thus
({*} FileOutputStream) => {*} Int -> Unit.

e Hence, the type variable T is instantiated to {*} Int -> Unit, which is not allowed and
causes the error.

2.7 Escape Checking of Mutable Variables

Another way one could try to undermine capture checking would be to assign a closure with a
local capability to a global variable. For instance like this®:
var loophole: {*} () -> Unit = () => (O
usingFile("tryEscape", f =>
loophole = () => f.write(0)
2This follows since type variables range over pure types, so * must appear under a box. But rule (Box) in Figure 3 restricts
variables in boxed capture sets to be declared in the enclosing environment, which does not hold for *.

3Mutable variables are not covered by the formal treatment of CC.q . We include the discussion anyway to show that
escape checking can be generalized to scope extrusions separate from result values.
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10 Odersky, Boruch-Gruszecki, Lee, Brachthauser, and Lhotak

3
loophole ()

We prevent such scope extrusions by imposing the restriction that mutable variables cannot have
types with universal capture sets.

One also needs to prevent returning or assigning a closure with a local capability in an argument
of a parametric type. For instance, here is a slightly more refined attack:

val sneaky = usinglLogFile { f => Pair(() => f.write(0), 1) }
sneaky . fst ()

At the point where the Pair is created, the capture set of the first argument is { f'}, which is OK. But
at the point of use, it is {*}: since f is no longer in scope we need to widen the type to a supertype
that does not mention it (c.f the explanation of avoidance in Section 3.3). This causes an error,
again, as the universal capability is not permitted to be in the unboxed form of the return type (c.f-
the precondition of (UnBoOX) in Figure 3).

Variable XY,z
Type Variable X,Y,Z

Value o,bw u= AMx:T)t | A[X<:S]t | oOx

Answer a = 0 | x

Term s, t = a | xy | x[S] | letx=sint | Cox
Shape Type S = X | T | V(x:U)T | VIX<:S]T | oT
Type WU == S | CS

Capture Set C = {xy,...,xn}

Fig. 2. Syntax of System CC«.q

3 THE CC.y CALCULUS

The syntax of CC.g is given in Figure 2. In short, it describes a dependently typed variant of
System F.. in monadic normal form (MNF) with capturing types and boxes.

Dependently typed: Types may refer to term variables in their capture sets, which introduces
a simple form of (variable-)dependent typing. As a consequence, a function’s result type may now
refer to the parameter in its capture set. To be able to express this, the general form of a function
type V(x : U)T explicitly names the parameter x. We retain the non-dependent syntax U — T for
function types as an abbreviation if the parameter is not mentioned in the result type T.

Dependent typing is attractive since it means that we can refer to object capabilities directly in
types, instead of having to go through auxiliary region or effect variables. We thus avoid clutter
related to quantification of such auxiliary variables.

Monadic normal form: The term structure of CC..5 requires operands of applications to be
variables. This does not constitute a loss of expressiveness, since a general application t; t; can
be expressed as letx; = t;inletx; = t;inx; x,. This syntactic convention has advantages for
variable-dependent typing. In particular, typing function application in such a calculus requires
substituting actual arguments for formal parameters. If arguments are restricted to be variables,
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these substitutions are just variable/variable renamings, which keep the general structure of a type.
If arguments were arbitrary terms, such a substitution would in general map a type to something
that was not syntactically a type. Monadic normal form [Hatcliff and Danvy 1994] is a slight
generalization of the better-known A-normal form (ANF) [Sabry and Felleisen 1993] to allow
arbitrary nesting of let expressions. We use a here a variant of MNF where applications are over
variables instead of values.

A similar restriction to MNF was employed in DOT [Amin et al. 2016], the foundation of Scala’s
object model, for the same reasons. The restriction is invisible to source programs, which can still
be in direct style. For instance, the Scala compiler selectively translates a source expression in
direct style to MNF if a non-variable argument is passed to a dependent function. Type checking
then takes place on the translated version.

Capturing Types: The types in CC..q are stratified as shape types S and regular types T. Regular
types can be shape types or capturing types {xy, ..., x,} S. Shape types are made up from the usual
type constructors in F.. plus boxes. We freely use shape types in place of types, assuming the
equivalence {} S = S.

Boxes: Type variables X can be bounded or instantiated only with shape types, not with regular
types. To make up for this restriction, a regular type T can be encapsulated in a shape type by
prefixing it with a box operator O T. On the term level, O x injects a variable into a boxed type.
A variable of boxed type is unboxed using the syntax C o— x where C is the capture set of the
underlying type of x. We have seen in Section 2 that boxing and unboxing allow a kind of capability
tunneling by omitting capabilities when values of parametric types are constructed and charging
these capabilities instead at use sites.

System F_. : We base CC..; on a standard type system that supports the two principal forms of
polymorphism, subtyping and universal.

Subtyping comes naturally with capabilities in capture sets. First, a type capturing fewer capa-
bilities is naturally a subtype of a type capturing more capabilities, and pure types are naturally
subtypes of capturing types. Second, if capability x is derived from capability y, then a type capturing
x can be seen as a subtype of the same type but capturing y.

Universal polymorphism poses specific challenges when capture sets are introduced which are
addressed in CC..p by the stratification into shape types and regular types and the box/unbox
operations that map between them.

Note that the only form of term dependencies in CC..; relate to capture sets in types. If we omit
capture sets and boxes, the calculus is equivalent to standard F.. , despite the different syntax. We
highlight in the figures the essential additions wrt F.. with a grey background.

CC. is intentionally meant to be a small and canonical core calculus that does not cover
higher-level features such as records, modules, objects, or classes. While these features are certainly
important, their specific details are also somewhat more varied and arbitrary than the core that’s
covered. Many different systems can be built on CC.. , extending it with various constructs to
organize code and data on higher-levels.

Capture Sets. Capture sets C are finite sets of variables of the form {x, ..., x,}. We understand
« to be a special variable that can appear in capture sets, but cannot be bound in I'. We write C \ x
as a shorthand for C \ {x}.

Capture sets of closures are determined using a function cv over terms.
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12 Odersky, Boruch-Gruszecki, Lee, Brachthauser, and Lhotak

DEFINITION (CAPTURED VARIABLES). The captured variables cv(t) of a term ¢ are given as follows.

cv(A(x : T)t) = cv(t)\x

cv(A[X <:S]t) = cv(b)

cv(x) = {x}

cv(letx =vint) = cv(t) ifx ¢ cv(t)

cv(letx =sint) cv(s) Ucev(t)\x

cv(xy) = {xy}
cv(x[S]) = {x}
cv(O x) = {}

cv(C o— x) = CU{x}

The definitions of captured and free variables of a term are very similar, with the following three
differences:

(1) Boxing a term O x obscures x as a captured variable.

(2) Dually, unboxing a term C o— x counts the variables in C as captured.

(3) In an evaluated let binding let x = v in ¢, the captured variables of v are counted only if x is a
captured variable of ¢.

The first two rules encapsulate the essence of box-unbox pairs: Boxing a term obscures its captured
variable and makes it necessary to unbox the term before its value can be accessed; unboxing a
term presents variables that were obscured when boxing.

Figure 3 presents typing and evaluation rules for CC..g . There are four main sections on subcap-
turing, subtyping, typing, and evaluation. These are explained in the following.

3.1 Subcapturing

Subcapturing establishes a preorder relation on capture sets that gets propagated to types. Smaller
capture sets with respect to subcapturing lead to smaller types with respect to subtyping.

The relation is defined by three rules. The first two rules (sc-seT) and (sc-ELEM) establish that
subsets imply subcaptures. That is, smaller capture sets subcapture larger ones. The last rule (sc-
VAR) is the most interesting since it reflects an essential property of object capabilities. It states
that a variable x of capturing type C S generates a capture set {x} that subcaptures the capabilities
C with which the variable was declared. In a sense, (sc-VAR) states a monotonicity property: a
capability refines the capabilities from which it is created. In particular, capabilities cannot be
created from nothing. Every capability needs to be derived from some more sweeping capabilities
which it captures in its type.

The rule also validates our definition of capabilities as variables with non-empty capture sets in
their types. Indeed, if a variable is defined as x : {} S, then by (sc-var) we have {x} <: {}. This
means that the variable can be disregarded in the formation of cv, for instance. Even if x occurs in
a term, a capture set with x in it is equivalent (with respect to mutual subcapturing) to a capture
set without. Hence, x can safely be dropped without affecting subtyping or typing.

Rules (sc-seT) and (sc-ELEM) mean that if set C is a subset of C’, we also have C <: C’. But the
reverse is not true. For instance, with (sc-vaR) we can derive the following relationship assuming
lambda-bound variables x and y:

x:{x} T,y :{x} T + {y} <: {x}

Intuitively this makes sense, as y can capture no more than x. However, we cannot derive {x} <: {y},
since arguments passed for y may in fact capture less than x, e.g. they could be pure.
While there are no subcapturing rules for top or bottom capture sets, we can still establish:
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Subcapturing
xeC Tk {x1}<:C...T F {xp} <:C
——— (SC-ELEM) (sc-sET)

Tk {x}<:C Tk {x1,....xn} <: C
x:C’'Sel T+ (C <:C
(sc-vAR)
I+ {x}<:C
Subtyping
I'+T<:T (REFL) r'trT<Th TrhLh<Ts FrTgwf
(TRANS)
X < SeT r-n<T
e —— (TVAR)
' X<:S§ 'rS<T (Top)
'rU; <: Uy Lx:Uy rT1 <t T'F S <8 ILX<:S +Fh <1y
(FUN) (TFUN)
Tr V(x : U])T] <: V(x : Uz)Tz rr V[X <: S1]T1 <: V[X <: Sz]Tz
T'FC <G 'k S§; <52 rrTh <D
(carT) _ (BOXED)
'k C151<:C S rronf<oh
Typing
x: CSeTl Tre:T T+T<:U I+ Uwf
A (VAR) (suB)
Trx: {x}S Tre:U
Tx:Uvrt:T ILrUwWF INX<:Srt:T T rSwf
(aBs) (TABS)
TFAGx:U)t: ev(t)\x V(x: U)T Tk AX <:S]t: ev(t) V[X <:S]T
Frx: CV(z:UT Try:U I'kx: CV[IX <:S|T
(arp) (TAPP)
I'rxy:[z:=y]T Ik x[S]:[X:=S]T
T'rx:CS C C dom(T) I'Fx:0CS C ¢ dom(T')
(BOX) (unBOX)
Trox:0CS I'FCo-x:CS
I'rs:T Ix:Trt:U x ¢ tv(U)
: (1e7)
Tk letx=sint:U
Evaluation
ole[xy]] — ole[[z=y]t]] if o(x) =A(z:T)t (appLY)
ole[x[S]]] — ole[ [X:=S]t]] if o(x) =A[X <: ']t (tappLY)
ole[] Co—x ]] — olel y ]] if o(x)= DOy (oPEN)
ole[letx=yint]] — ole[[x:=y]t]] (RENAME)
ole[letx=vint]] — o[letx=vine[t]] if e#][] (LIFT)
where Storecontext o == [] | letx=vino
Eval context e == [] | letx=eint

Fig. 3. Typing and Evaluation Rules of System CC«.q
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ProrosiTION 3.1. IfC is well-formed inT, thenT + {} <: C <: {x}.
A proof is enclosed in the appendix.
PropPosITION 3.2. The subcapturing relationT' + _ <: _ is a preorder.

Proor. We can show that transitivity and reflexivity are admissible. O

3.2 Subtyping

The subtyping rules of CC.. are very similar to those of System F_. , with the only significant
addition being the rules for capturing and boxed types. Note that as S = {} S, both transitivity
and reflexivity apply to shape types as well. (capT) allows comparing types that have capture sets,
where smaller capture sets lead to smaller types. (BOXED) propagates subtyping relations between
types to their boxed versions.

3.3 Typing
Typing rules are again close to System F_. , with differences to account for capture sets.

Rule (VAR) is the basis for capability refinements. If x is declared with type C S, then the type
of x has {x} as its capture set instead of C. The capturing set {x} is more specific than C, in the
subcapturing sense. Therefore, we can recover the capture set C through subsumption.

Rules (aBs) and (TABs) augment the abstraction’s type with a capture set that contains the
captured variables of the term. Through subsumption and rule (sc-vAr), untracked variables can
immediately be removed from this set.

The (app) rule substitutes references to the function parameter with the argument to the function.
This is possible since arguments are guaranteed to be variables. The function’s capture set C is
disregarded, reflecting the principle that the function closure is consumed by the application. Rule
(Tapp) is analogous.

Aside: A more conventional version of (TAPP) would be

I x:CV[X<:S5]T rr+S<:¥
I+ x[S]:[X:=8]T

(Taprp’)

That formulation is equivalent to (TAPP) in the sense that either rule is derivable from the other,
using subsumption and contravariance of type bounds.

Rules (Box) and (UNBOX) map between boxed and unboxed types. They require all members of
the capture set under the box to be bound in the environment I'. Consequently, while one can
create a boxed type with {*} as its capture set through subsumption, one cannot unbox values of
this type. This property is fundamental for ensuring scoping of capabilities.

Avoidance. As is usual in dependent type systems, Rule (LET) has as a side condition that the
bound variable x does not appear free in the result type U. This so called avoidance property is
usually attained through subsumption. For instance consider an enclosing capability ¢ : T; and the
term

letx =A(y: T).cinA(z : {x} ).z

The most specific type of x is {c} (T, — T;) and the most specific type of the body of the let is
V(z : {x} Tz).{z} Ts. We need to find a supertype of the latter type that does not mention x. It turns
out the most specific such type is s — {c}T5, so that is a possible type of the let, and it should be
the inferred type.

In general there is always a most specific avoiding type for a (LET):
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PRrROPOSITION 3.3. Consider a term letx = sint in an environment I such thatT + s : Ty and
[,x:T; + t:T,. Then there exists a minimal (wrt <:) type Ty such that T, <: T and x ¢ tv(T3)

Proor. Without loss of generality, assume that I' + s : C; U is the most specific typing for s in T’
andT,x : C; U F t: T is the most specific typing for ¢ in the context of the body of the let, namely
I,x:Cs U.Let T’ be constructed from T by replacing x with Cs in covariant capture set positions
and by replacing x with the empty set in contravariant capture set positions. Then for every type
V avoiding x such that I',x : Cs S + T <: V,T + T’ <: V. This is shown by a straightforward
structual induction, which we give in the appendix in Section A.61. O

3.4 Well-formedness

Well-formedness I' T wf is equivalent to well-formedness in System F_, in that free variables in
types and terms must be defined in the environment, except that capturing types may mention the
universal capability * in their capture sets:

'+ Swf C € dom(T") U {*}
I' w CSwf

(cAPT-WF)

3.5 Evaluation

Evaluation is defined by a small-step reduction relation. This relation is quite different from usual
reduction via term substitution. Substituting values for variables would break the monadic normal
form of a program. Instead, we reduce the right hand sides of let-bound variables in place and
lookup the bindings in the environment of a redex.

Every redex is embedded in an outer store context and an inner evaluation context. These represent
orthogonal decompositions of let bindings. An evaluation context e always puts the focus [] on the
right-hand side t; of a let binding let x = t; in t,. By contrast, a store context o puts the focus on
the following term ¢, and requires that t; is evaluated.

The first three rules — (aPPLY), (TAPPLY), (OPEN) — rewrite simple redexes: applications, type
applications and unboxings. Each of these rules looks up a variable in the enclosing store and
proceeds based on the value that was found.

The last two rules are administrative in nature. They both deal with evaluated lets in redex
position. If the right hand side of the let is a variable, the let gets expanded out by renaming the
bound variable using (RENAME). If it is a value, the let gets lifted out into the store context using
(LIFT).

ProposITION 3.4. Evaluation is deterministic. For any term t; there is at most one term t, such that
t — .

ProoF. By a straightforward inspection of the reduction rules and definitions of contexts.

4 METATHEORY

We prove that CC..j is sound through the standard progress and preservation theorems. The proofs
for all the lemmas and theorems stated in this section are provided in the appendix.

In order to prove both progress and preservation, we need technical lemmas that allow manipula-
tion of typing judgements for terms under store and evaluation contexts. To state these lemmas, we
first need to define what it means for typing and store contexts to match, which we do in Figure 4.
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I'x:Tro~A
F'ro:T x ¢ tv(T) Tr[]~-

I't letx=0vino~x:T,A

Fig. 4. Matching environment

Having I' + ¢ ~ A lets us know that o is well-typed in I if we use A as the types of the bindings.
Using this definition, we can state the following four lemmas, which also illustrate how the store
and evaluation contexts interact with typing:

Definition 4.1 (Evaluation context typing (I + e : U = T)). We say that I types an evaluation
contexteasU = TifI,x:Ure[x]:T.

LEMMA 4.2 (EVALUATION CONTEXT TYPING INVERSION).
T + e[s]:T implies that for some U we havel' - e: U = T andT +s: U.

LEMMA 4.3 (EVALUATION CONTEXT REIFICATION).
IfbothT + e:U =T andT + s:U, thenT + e[s]:T.

LEMMA 4.4 (STORE CONTEXT TYPING INVERSION).
I' v o[t]:T implies that for some A we havel + ¢ ~AandI',A + t:T.

LEMMA 4.5 (STORE CONTEXT REIFICATION).
IfbothT,A + t:T andT + o ~ A, then alsoT + o[ t]:T.

We can now proceed to our main theorems; their statements differ slightly from System F_, ,
as we need to account for our monadic normal form. Our preservation theorem captures that the
important type to preserve is the one assigned to the term under the store. It is stated as follows:

THEOREM 4.6 (PRESERVATION). If we havel + 0 ~ AandT,A + t : T, theno[t] — o[ t']
implies thatT,A v t' : T.

To neatly state the progress theorem, we first need to define canonical store-plug splits, which
simply formally express that the store context wrapping a term is as large as possible:

Definition 4.7 (Canonical store-plug split). We say that a term of the form o[ t ] is a canonical
split (of the entire term into store context o and the plug t) if ¢ is not of the form letx : T =vint’.

With this definition, we can now state the progress theorem:

THEOREM 4.8 (PROGRESS). If + o[ e[t ]]:T ando[ e[ t]] is a canonical store-plug split, then
eithere[ t | = a, or there exists o[ t' | such thato[e[t]] — o[t ].

The lemmas needed to prove progress and preservation are for the most part standard. As our cal-
culus is term-dependent, we also need to account for term substitution affecting both environments
and types, not only terms. For instance, the lemma stating that term substitution preserves typing
is expressed as follows:

LEMMA 4.9 (TERM SUBSTITUTION PRESERVES TYPING).
IfT,x:UA v t:TandT v y:U, thenT, [x:=y]A F [x =y]t: [x :=y]T.

In this statement, we can also see that we only consider substituting one term variable for
another, due to MNF. Using MNF affects other parts of the proof as well - in addition to typical
canonical forms lemmas, we also need to show that looking up the value bound to a variable in a
store preserves the types we can assign to the variable:

LEMMA 4.10 (VARIABLE LOOKUP INVERSION).
If we have bothT + o ~ A andx : CR € T, A, then o(x) = v implies thatT,A + v : CR.
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Capture sets and captured variables. Our typing rules use cv to calculate the capture set that should
be assigned to terms. With that in mind, we can ask the question: what is the exact relationship
between captured variables and capture sets we use to type the terms?

Because of subcapturing, this relationship is not as obvious as it might seem. For fully evaluated
terms (of the form o[a]), their captured variables are the most precise capture set they can be
assigned. The following lemma states this formally:

LEMMA 4.11 (CAPTURE PREDICTION FOR ANSWERS). IfT + o[a] : C S, thenT + cv(o[a]) <: C.

If we start with an unreduced term o|¢], then the situation becomes more complex. It can mention
and use capabilities that will not be reflected in the capture set at all — for instance, if t = x y, the
capture set of x is irrelevant to the type assigned to ¢ by (app). However, if o[¢] reduces fully to a
term of the form o[o”’[a]], the captured variables of ¢’ [a] will correspond to capture sets we could
assign to t.

In other words, the capture sets we assign to unevaluated terms under a store context predict
variables that will be captured by the answer those terms reduce to. Formally we can express this
as follows:

LEMMA 4.12 (CAPTURE PREDICTION FOR TERMS).
Let + o ~AandA v t:CS. Then o[t] —"* o[o’[a]] implies that A + cv(c’'[a]) <: C.

4.1 Correctness of boxing

Boxing capabilities allows temporarily hiding them from capture sets. Given that we can do so, one
may be inclined to ask: what is the correctness criterion for our typing rules for box and unbox
forms?

Intuitively, we should not be able to “smuggle in” a capability by using boxes: all the capabilities
of a term should be somehow accounted for. A basic criterion our typing rules should satisfy is
that a term that boxes and immediately unboxes a capability should have a cv at least as wide than
that of the capability, i.e. a cv that accounts for the capability. Formally we can state this property
as follows:

PROPOSITION 4.13. Let+ o + A andlett =lety = 0O xinC o— y such that for somee, T, we have
Avrol[e[t]]:T. Then we also have:

A+ {x} <:C=cv(t)

It is straightforward to verify that this holds based on the progress theorem and by induction
on the typing derivation. Ideally, our correctness criterion would speak about arbitrary terms, by
characterising their captured variables alongside reduction paths. Since this clearly doesn’t make
sense for closed terms, we will need one additional definition: a way of introducing well-behaved
capabilities. A platform ¥ is an outer portion of the store which formally represents primitive
capabilities. It is defined as follows:

¥ = letx=0inV¥ if fv(o) = {}
| [

Since a platform ¥ is meant to introduce primitive capabilities, it doesn’t make sense to type them
with any other capture set than {*}. The following definition captures this idea:

DEFINITION (WELL-TYPED PROGRAM). We say that a term V[ t | is a well-typed program if for some
typing context A such that+ ¥ ~ A we have A+ t : T, and for all x € dom(¥) we have x : {+}S € A.
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The capabilities introduced by the platform of a well-typed program are well-behaved in the
sense that their values cannot reference any other variable, and their capture sets are {*}. Given cv
and platform, we can state our desired lemma as follows:

LEMMA 4.14 (PROGRAM AUTHORITY PRESERVATION). Let V[ t | be a well-typed program such that
Y[t] — Y[t ] Thencv(t’) is a subset of cv(t).

The name of this lemma hints at the property we want to demonstrate next, which offers
another perspective at what it means for boxes to be correctly typed. This property will capture
the connection between the cv of a term and the capabilities it may use during evaluation. We
make intuitive usage of this connection when we say, for instance, that a function f typed as
{} Unit — Unit cannot perform any effects when called. Formally, it cannot do so because when
we reduce a term of the form f x, based on (aBs) we know it will be replaced by some term such
that cv(t) = {}. Here is where we make an intuitive jump: since cv(t) is empty and we do not pass
anything to ¢, it should not use any capabilities during evaluation.

To state this formally, first we need to define which capabilities are used during reduction. All
formal capabilities are abstractions, so a natural definition is to say that a capability x was used
if it was applied, i.e. if a term of the form x y was reduced. To speak about this, we will define
used(t — s) as function from reduction derivations to sets of variables, as follows:

used(t; — tp — -+ —>t,) = used(t;y — tp) Uused(ty — -+ —> 1)
used(oe[xy] ] —o[t]) = {x}
used(a e[ x[T] ] ] —o[t]) = {x}

used(t; — t3) = {} (otherwise)

The last case applies to rules (OPEN), (RENAME), (LIFT).

Now, let us consider how exactly the cv of a term is connected to the capabilities it will use
during evaluation. If we disregard boxes, then clearly a term ¢ can only use a capability x if it is
free in t, which also means that it is in cv(t). However, boxing a capability hides it from the cv. If
we disregard unbox forms, this is again not a problem: a capability under a box cannot be used
unless the box is opened first. Now, if we consider unbox forms C o— x, we encounter the essence
of the problem: cv(C o— x) = C. On the term level, we have no guarantee that the capture sets of C
and x are connected. The (Box) and (UNBOX) typing rules ensure that if a term gains access to a
capability by opening a box, then the “key” used to open the box (the C in C o— x) must account for
the boxed capability. Thanks to them, we can say that cv(t) is the authority of the term ¢: during
reduction, ¢ can only use capabilities contained in cv(t). We formally state this property as follows:

LEMMA 4.15 (USED CAPABILITY PREDICTION). Let ¥[ t | be a well-typed program that reduces in
zero or more steps to V[ t' |. Then the primitive capabilities used during the reduction are a subset of
the authority of t.

5 EXAMPLES

We have implemented a type checker for CC..; as an extension of the Scala 3 compiler to enable
experimentation with larger code examples. Notably, our extension infers which types must be
boxed, and automatically generates boxing and unboxing operations when values are passed to
and returned from instantiated generic datatypes, so none of these technical details appear in the
actual user-written Scala code.

In this section, we present examples that demonstrate the usability of the language. In Section 5.1,
we remain close to the core calculus by encoding lists using only functions; here, we still show the
boxed types and boxing and unboxing operations that the compiler infers in gray, though they are
not in the source code. In Sections 5.2 and 5.3, we use additional Scala features in larger examples,
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to implement stack allocation and polymorphic data structures. For these examples, we present the
source code without cluttering it with the boxing operations inferred by the compiler.

5.1 Church-Encoded Lists

Using the Scala prototype implementation of CC.. , the Bohm-Berarducci encoding [Bohm and
Berarducci 1985] of a linked list data structure can be implemented and typed as follows. Here, a
list is represented by its right fold function:

type Op[T <: O {*} Any, C <: O {x} Any] =
(v: T) => (s: C) =>C

type List[T <: O {*} Any]l =
[C <: O {x} Any]l -> (op: Op[T, C1) -> {op} (s: C) -> C

def nil[T <: O {*} Anyl: List[T] =
[C <: O {*} Any]l => (op: Op[T, CI1) => (s: C) => s

def cons[T <: O {*} Anyl(hd: T, tl: List[T]): List[T] =
[C <: O {*} Any]l => (op: Op[T, C1) => (s: C) => op(hd)(t1llCI(op)(s))
A list inherently captures any capabilities that may be captured by its elements. Therefore, naively,
one may expect the capture set of the list to include the capture set of the type T of its elements.
However, boxing and unboxing enables us to elide the capture set of the elements from the capture
set of the containing list. When constructing a list using cons, the elements must be boxed:

cons(0 1, cons(O 2, cons(O 3, nil)))
A map function over the list can be implemented and typed as follows:
def map[A <: O {*x}Any, B <: 0O {*} AnyJ(xs: List[AI)(f: {*} A -> B): List[B] =
{3} o xs[O List[B11((hd: A) => (tl: List[B]) => cons(f(hd), t1))(nil)

The mapped function f may capture any capabilities, as documented by the capture set {*} in its
type. However, this does not affect the type of map or its result type List[B], since the mapping is
strict, so the resulting list does not capture any capabilities captured by f. If a value returned by
the function f were to capture capabilities, this would be reflected in its type, the concrete type
substituted for the type variable B, and would therefore be reflected in the concrete instantiation of
the result type List[B] of map.

5.2 Stack Allocation

Automatic memory management using a garbage collector is convenient and prevents many errors,
but it can impose significant performance overheads in programs that need to allocate large numbers
of short-lived objects. If we can bound the lifetimes of some objects to coincide with a static scope,
it is much cheaper to allocate those objects on a stack as follows: 4

class Pooled

val stack = mutable.ArrayBuffer[Pooled]()
var nextFree = 0

def withFreshPooled[T](op: Pooled => T): T =

“4For simplicity, this example is neither thread nor exception safe.
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if nextFree >= stack.size then stack.append(new Pooled)

val pooled = stack(nextFree)
nextFree = nextFree + 1

val ret = op(pooled)
nextFree = nextFree - 1

ret

The withFreshPooled method calls the provided function op with a freshly stack-allocated
instance of class Pooled. It works as follows. The stack maintains a pool of already allocated
instances of Pooled. The nextFree variable records the offset of the first element of stack that is
available to reuse; elements before it are in use. The withFreshPooled method first checks whether
the stack has any available instances; if not, it adds one to the stack. Then it increments nextFree
to mark the first available instance as used, calls op with the instance, and decrements nextFree to
mark the instance as freed. In the fast path, allocating and freeing an instance of Pooled is reduced
to just incrementing and decrementing the integer nextFree.

However, this mechanism fails if the instance of Pooled outlives the execution of op, if op
captures it in its result. Then the captured instance may still be accessed while at the same time also
being reused by later executions of op. For example, the following invocation of withFreshPooled
returns a closure that accesses the Pooled instance when it is invoked on the second line, after the
Pooled instance has been freed:

val pooledClosure = withFreshPooled(pooled => () => pooled.toString)
pooledClosure ()

Using capture sets, we can prevent such captures and ensure the safety of stack allocation just by
marking the Pooled instance as tracked:

def withFreshPooled[T](op: (pooled: {*x} Pooled) => T): T =

Now the pooled instance can be captured only in values whose capture set accounts for {pooled}.
The type variable T cannot be instantiated with such a capture set because pooled is not in
scope outside of withFreshPooled, so only {*} would account for {pooled}, but we disallowed
instantiating a type variable with {*}. With this declaration of withFreshPooled, the above
pooledClosure example is correctly rejected, while the following safe example is allowed:

withFreshPooled(pooled => pooled.toString)

5.3 Collections

In the following examples we show that a typing discipline based on CC..5 can be lightweight
enough to make capture checking of operations on standard collection types practical. This is
important, since such operations are the backbone of many programs. All examples compile with
our current capture checking prototype [Scala 2022a].

We contrast the APIs of common operations on Scala’s standard collection types List and
Iterator when capture sets are taken into account. Both APIs are expressed as Scala 3 extension
methods [Odersky and Martres 2020] over their first parameter. Here is the List APIL:

extension [A](xs: List[A])
def apply(n: Int): A
def foldLeft[B](z: B)(op: (B, A) => B): B
def foldRight[BJ(z: B)(op: (A, B) => B): B
def foreach(f: A => Unit): Unit
def iterator: Iterator[A]
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def drop(n: Int): List[A]

def map[B](f: A => B): List[B]

def flatMap[Bl(f: A => {x} IterableOnce[B]): List[B]
def ++[B >: A]l(xs: {*} IterableOnce[B]): List[B]

Notably, these methods have almost exactly the same signatures as their versions in the standard

Scala collections library. The only differences concern the arguments to flatMap and ++ which

now admit an I'terableOnce argument with an arbitrary capture set. Of course, we could have left

out the {*} but this would have needlessly restricted the argument to non-capturing collections.
Contrast this with some of the same methods for iterators:

extension [A](it: Iterator[A])
def apply(n: Int): A
def foldLeft[BJ(z: B)(op: (B, A) => B): B
def foldRight[BJ(z: B)(op: (A, B) => B): B
def foreach(f: A => Unit): Unit

def drop(n: Int): {it} Iterator[A]

def map[B](f: A => B): {it, f} Iterator[B]

def flatMap[B](f: A => {*} IterableOnce[B]): {it, f} Iterator[B]
def ++[B >: AJ(xs: {*} IterableOnce[B]): {it, xs} Iterator[B]

Here, methods apply, foldLeft, foldRight, foreach again have the same signatures as in the cur-
rent Scala standard library. But the remaining four operations need additional capture annotations.
Method drop on iterators returns the given iterator it after skipping n elements. Consequently,
its result has {it} as capture set. Methods map and flatMap lazily map elements of the current
iterator as the result is traversed. Consequently they retain both it and f in their result capture set.
Method ++ concatenates two iterators and therefore retains both of them in its result capture set.
The examples attest to the practicality of capture checking. Method signatures are generally
concise. Higher-order methods over strict collections by and large keep the same types as before.
Capture annotations are only needed for capabilities that are retained in closures and are exe-
cuted on demand later. Where such annotations are needed they match the developer’s intuitive
understanding of reference patterns and signal information that looks relevant in this context.

6 RELATED WORK

The results presented in this paper did not emerge in a vacuum and many of the underlying ideas
appeared individually elsewhere in similar or different form. We follow the structure of the informal
presentation in Section 2 and organize the discussion of related work according to the key ideas
behind CC. .

Effects as Capabilities. Establishing effect safety by moderating access to effects via term-level
capabilities is not a new idea [Marino and Millstein 2009]. It has been proposed as a strategy to
retrofit existing languages with means to reason about effect safety [Choudhury and Krishnaswami
2020; Liu 2016; Osvald et al. 2016]. Recently, it also has been applied as the core principle behind a
new programming language featuring effect handlers [Brachthduser et al. 2020a]. Similar to the
above prior work, we propose to use term-level capabilities to restrict access to effect operations
and other scoped resources with a limited lifetime. Representing effects as capabilities results in
a good economy of concepts: existing language features, like term-level binders can be reused,
programmers are not confronted with a completely new concept of effects or regions.
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Making Capture Explicit. Having a term-level representation of scoped capabilities introduces
the challenge to restrict use of such capabilities to the scope in which they are still live. To address
this issue, effect systems have been introduced [Biernacki et al. 2020; Brachth&user et al. 2020b;
Zhang and Myers 2019] but those can result in overly verbose and difficult to understand types
[Brachthiuser et al. 2020a]. A third approach, which we follow in this paper, is to make capture
explicit in the type of functions.

Hannan [1998] proposes a type-based escape analysis with the goal to facilitate stack allocation.
The analysis tracks variable reference using a type-and-effect system and annotates every function
type with the set of free variables it captures. The authors leave the treatment of effect polymorphism
to future work. In a similar spirit, Scherer and Hoffmann [2013] present Open Closure Types to
facilitate reasoning about data flow properties such as non-interference. They present an extension
of the simply typed lambda calculus that enhances function types [I}](r) — 7 with the lexical
environment Iy that was originally used to type the closure.

Brachthiuser et al. [2022] show System C, which mediates between first- and second-class values
with boxes. In their system, scoped capabilities are second-class values. Normally, second-class
values cannot be returned from any scope, but in System C they can be boxed and returned from
some scopes. The type of a boxed second-class value tracks which scoped capabilities it has captured
and accordingly, from which scopes it cannot be returned. System C tracks second-class values
with a coeffect-like environment and uses an effect-like discipline for tracking captured capabilities,
which can in specific cases be more precise than cv. In comparison, CC..; does not depend on a
notion of second-class values and deeply integrates capture sets with subtyping.

Recently, Bao et al. [2021] have proposed to qualify types with reachability sets. Their reachability
types allow reasoning about non-interference, scoping and uniqueness by tracking for each reference
what other references it may alias or (indirectly) point to. Their system formalizes subtyping but
not universal polymorphism. However, it relates reachability sets along a different dimension than
CC.g . Whereas in CC..5 a subtyping relationship is established between a capability ¢ and the
capabilities in the type of c, reachability types assume a subtyping relationship between a variable
x and the variable owning the scope where x is defined. Reachability types track detailed points-to
and aliasing information in a setting with mutable variables, while CC 5 is a more foundational
calculus for tracking references and capabilities that can be used as a guide for an implementation
in a complete programming language. It would be interesting to explore how reachability types
can be expressed in CC..y .

Capture Polymorphism. Combining effect tracking with higher-order functions immediately
gives rise to effect polymorphism, which has been a long-studied problem.

Similar to the usual (parametric) type polymorphism, the seminal work by Lucassen and Gifford
[1988] on type and effect systems featured (parametric) effect polymorphism by adding language
constructs for explicit region abstraction and application. Similarly, work on region based memory
management [Tofte and Talpin 1997] supports region polymorphism by explicit region abstraction
and application. Recently, languages with support for algebraic effects and handlers, such as Koka
[Leijen 2017] and Frank [Lindley et al. 2017], feature explicit, parametric effect polymorphism.

It has been observed multiple times, for instance by Osvald et al. [2016] and Brachthiuser et al.
[2020a], that parametric effect polymorphism can become verbose and results in complicated types
and confusing error messages. Languages sometimes attempt to hide the complexity — they “simplify
the types more and leave out ‘obvious’ polymorphism” [Leijen 2017]. However, this solution is not
satisfying since the full types resurface in error messages. In contrast, we support polymorphism
by reusing existing term-level binders and support simplifying types by means of subtyping and
subcapturing.
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Rytz et al. [2012] present a type-and-effect system in which higher-order functions like map can
be assigned simple signatures that do not mention effect variables. As in CC.g, it is not necessary
to modify the signatures of higher-order functions which only call their argument. However, in
the “argument-relative” system of Rytz et al,, it is impossible to reference an effect of a particular
argument. This limits the overall expressivity in their system, compared to CC..g - for instance, it
is not possible to type function composition, or in general a function that returns a value whose
effect is relative to its argument. Their system also does not allow user-defined effects, while
CC.. allows tracking any variable by annotating it with an appropriate capture set.

The problem of how to prevent capabilities from escaping in closures is also addressed by second-
class values that can only be passed as arguments but not be returned in results or stored in mutable
fields. Siek et al. [2012] enforce second-class function arguments using a classical polymorphic
effect discipline whereas Osvald et al. [2016] and Brachthauser et al. [2020a] present a specialized
type discipline for this task. Second-class values cannot be returned or closed-over by first-class
functions. On the other hand, second-class functions can freely close over capabilities, since they are
second-class themselves. This gives rise to a convenient and light-weight form of contextual effect
polymorphism [Brachthéuser et al. 2020a]. While this approach allows for effect polymorphism
with a simple type system, it is also restrictive because it also forbids local returns and retentions
of capabilities; a problem solved by adding boxing and unboxing [Brachthéuser et al. 2022].

Foundations of Boxing. Contextual modal type theory (CMTT) [Nanevski et al. 2008] builds on
intuitionistic modal logic. In intuitionistic modal logic, the graded propositional constructor [¥] A
(pronounced box) witnesses that A can be proven only using true propositions in ¥. Judgements in
CMTT have two contexts: T', roughly corresponding to CC..; bindings with {+} as their capture
set, and a modal context A roughly corresponding to bindings with concrete capture sets. Bindings
in the modal context are necessarily boxed and annotated with a modality x :: A[¥] € A. Just like
our definition of captured variables in CC. 5 , the definition of free variables by Nanevski et al.
[2008] assigns the empty set to a boxed term (that is, fo(box(¥.M)) = {}). Similar to our unboxing
construct, using a variable bound in the modal context requires that the current context satisfies the
modality ¥, mediated by a substitution o. Different to CMTT, CC..,5 does not introduce a separate
modal context. It also does not annotate modalities on binders, instead these are kept in the types.
Also different to CMTT, in CC..; unboxing is annotated with a capture set and not a substitution.

Comonadic type systems were introduced to support reasoning about purity in existing, impure
languages [Choudhury and Krishnaswami 2020]. Very similar to the box modality of CMTT, a
type constructor ‘Safe’ witnesses the fact that its values are constructed without using any impure
capabilities. The type system presented by Choudhury and Krishnaswami [2020] only supports a
binary distinction between pure values and impure values, however, the authors comment that it
might be possible to generalize their system to graded modalities.

In the present paper, we use boxing as a practical tool, necessary to obtain concise types when
combining capture tracking with parametric type polymorphism.

Coeffect Systems. Coeffect systems also attach additional information to bindings in the environ-
ment, leading to a typing judgement of the form '@ C F e : 7. Such systems can be seen as similar
in spirit to CC..p , where additional information is available about each variable in the environment
through the capture set of its type. Petricek et al. [2014] show a general coeffect framework that can
be instantiated to track various concepts such as bounded reuse of variables, implicit parameters
and data access. This framework is based on simply typed lambda calculus and its function types
are always coeffect-monomorphic. In contrast, CC..q is based on System F_, (thus supporting type
polymorphism and subtyping) and supports capture-polymorphic functions.
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Object Capabilities. The (object-)capability model of programming [Boyland et al. 2001; Crary
et al. 1999; Miller 2006], controls security critical operations by requiring access to a capability.
Such a capability can be seen as the constructive proof that the holder is entitled to perform the
critical operation. Reasoning about which operations a module can perform is reduced to reasoning
about which references to capabilities a module holds.

The Wyvern language [Melicher et al. 2017] implements this model by distinguishing between
stateful resource modules and pure modules. Access to resource modules is restricted and only
possible through capabilities. Determining the authority granted by a module amounts to manually
inspecting its type signature and all of the type signatures of its transitive imports. To support this
analysis, Melicher [2020] extends the language with a fine-grained effect system that tracks access
of capabilities in the type of methods.

Figueroa et al. [2016] show an intricately engineered encoding of object capabilities in Haskell.
A monad transformer’s private operations can only be called from modules with the appropriate
authority. The capabilities may be part of a hierarchy, e.g. the ReadWrite capability may subsume
the Read and Write capabilities. Capabilities may be shared between modules through encoded
friend declarations, and one may determine a module’s authority like in Wyvern.

In CC..5, one can statically reason about authority and capabilities simply by inspecting capture
sets of types. Additionally, subcapturing naturally allows defining capability hierarchies. If we
model modules via function abstraction, the function’s capture set directly reflects its authority.
Importantly, CC..; does not include an effect system and thus tracks mention rather than use.

7 CONCLUSION

We introduced a new type system CC .. to track captured references of values. Tracked references
are restricted to capabilities, where capabilities are references bootstrapped from other capabilities,
starting with the universal capability. Implementing this simple principle then naturally suggests a
chain of design decisions:

(1) Because capabilities are variables, every function must have its type annotated with its free
capability variables.

(2) To manage the scoping of those free variables, function types must be dependently-typed.

(3) To prevent non-variable terms from occurring in types, the programming language is formu-
lated in monadic normal form.

(4) Because of type dependency, the let-bindings of MNF have to satisfy the avoidance property,
to prevent out-of-scope variables from occurring in types.

(5) To make avoidance possible, the language needs a rich notion of subtyping on the capture
sets.

(6) Because the capture sets represent object capabilities, the subcapture relation cannot just
be the subset relation on sets of variables — it also has to take into account the types of the
variables, since the variables may be bound to values which themselves capture capabilities.

(7) To keep the size of the capture sets from ballooning out of control, the paper introduces a box
connective with box and unbox rules to control when free variables are counted as visible.

We showed that the resulting system can be used as the basis for lightweight polymorphic effect
checking, without the need for effect quantifiers. We also identified three key principles that keep
notational overhead for capture tracking low:

— Variables are tracked only if their types have non-empty capture sets. In practice the majority
of variables are untracked and thus do not need to be mentioned at all.

— Subcapturing, subtyping and subsumption mean that more detailed capture sets can be
subsumed by coarser ones.
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- Boxed types stop propagation of capture information in enclosing types which avoids repeti-
tion in capture annotations to a large degree.

Our experience so far indicates that the presented calculus is simple and expressive enough to
be used as a basis for more advanced effect and resource checking systems and their practical
implementations.
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A PROOFS
A.1 Proof devices

Throughout the proof, we follow the Barendregt convention and only consider environments where
all variables are unique, i.e. if an environment is of the form T, x : T we have x ¢ dom(T).

We define environment well-formedness + I' wf in the natural way — empty environment is
well-formed, and if both + T wf andT + T wf, thenalsoT,x:TandT,X <: T.

To prove Preservation (Theorem A.43), we relate the typing derivation of a term of the form
o[ t ] to the typing derivation for the plug term ¢t inside the store 0. We do so with the following
definition:

Matching environment

ILx:Tro~A Tro:T x¢ftv(T)

I't letx=0vino~x:T,A

Fr[]~-

Definition A.1 (Evaluation context typing (' + e : U = T)). We say that e can be typedasU = T
inTiffforall t suchthatT' +¢:U,wehave'Fe[t]:T.

Fact A2. If o t] is a well-typed term in T, then there exists a A matching o (i.e. such that
I' + o0 ~A), finding it is decidable, and T, A is well-formed.

Fact A.3. The analogous holds fore[ t .

A.2 Properties of Evaluation Contexts and Stores

In the proof, we use the following metavariables: C, D for capture sets, R, S for shape types, P, Q, T, U
for types.

We also denote the capture set fragment of a type as cv(T), defined as cv(C R) = C.

In all our statements, we implicitly assume that all environments are well-formed.

LEMMA A.4 (INVERSION OF TYPING UNDER AN EVALUATION CONTEXT). If T + e[s]: T, thens is
well-typed inT.

Proor. Proceed by induction on e. If e is empty then the result directly holds, so consider when
s =letx = ¢'[ s’ | ins”. By inverting the typing derivation we know thatI" + e’[ s’ ] : T’, and
hence by induction we conclude that " + s : U for some type U. O
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LEMMA A.5 (EVALUATION CONTEXT TYPING INVERSION).
T + e[s]:T implies that for some U we havel' +e: U = T andT +s: U.

Proor. By induction on the structure of e. If e =[], then '+ s: Tand clearly '+ [ | : T = T.
Otherwise e = letx = ¢’ in t. Proceed by induction on the typing derivation of e[ s ]. We can only
assume that T e[ s | : T’ for some T’ s.t. T + T’ <: T.

Case (LET). Then T+ e’[ s | : U' and T, x : U’ + t : T’ for some U’. By the outer IH, for some
U wethenhave'+ ¢ : U = U’ and T + s : U. The former unfolds to Vs’.T + s’ : U =
I'+e'[s"]:U'. Wenow want to show that Vs". T +s" : U = T +e[s’ ]| :T". We already
haveT +e’[s"]: U andT,x: U’ + t: T’, so we can conclude by (LET).

Case (suB). ThenT e[ s]: T” and T + T” <: T’. We can conclude by the inner IH and

(TRANS).
]
LEMMA A.6 (EVALUATION CONTEXT REIFICATION).
IfbothT + e:U=TandT + s:U, thenT + e[s]:T.
Proor. Immediate from the definition of '+ e: U = T. O

LEMMA A.7 (STORE CONTEXT REIFICATION). IfI' + o ~AandT,A + t:T thenT + o[ t]:T.

Proor. By induction on o.
Case o = [ ]. Immediate.
Casec=o'[letx =vin[]]. Then A = A’,x : U for some U. Since x ¢ fv(T) asT + T wf,
by (LET), we have that I, A’ + letx = vint and hence by the induction hypothesis for some
U we have that T, x : U + o’[t] : T. The result follows directly.
O

The above lemma immediately gives us:

COROLLARY A.8 (REPLACEMENT OF TERM UNDER A STORE CONTEXT). If I' + o[t ] : T and
I'o~AandT,A v t:T, then forallt’ such thatT,A v+ t' : T we havel + o[ ¢t']:T.

A.3 Properties of Subcapturing
LeEMMA A.9 (Top cAPTURE SET). LetT'+ C wf. ThenT + C <: {x}.

Proor. By induction on T'. If T is empty, then C is either empty or * € C, so we can conclude
by (sc-seT) or (sc-ELEM) correspondingly. Otherwise, I' = IV, x : D S and since I is well-formed,
I" + D wf. By (sc-sET), we can conclude if for all y € C we have I' + {y} <: {+}.If y = x, by IH
we derive I'” + D <: {x}, which we then weaken to I' and conclude by (sc-var). If y # x, then
I'" + {y} wf, so by IH we derive I’ + {y} <: {*} and conclude by weakening. O

CoROLLARY A.10 (EFFECTIVELY TOP CAPTURE SET). Let T + C, D wf such that = € D. Then we can
deriveT + C <: D.

Proor. We can derive T' + C <: {*} by Lemma A.9 and then we can conclude by Lemma A.13
and (SC-ELEM). O

LEMMA A.11 (UNIVERSAL CAPABILITY SUBCAPTURING INVERSION). LetT'+ C <: D. If * € C, then
* € D.

Proor. By induction on subcapturing. Case (sc-ELEM) immediate, case (sc-SET) by repeated IH,
case (sc-VAR) contradictory. O
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LEMMA A.12 (SUBCAPTURING DISTRIBUTIVITY). LetI' + C <: D. Then for all x € C we have
I+ {x}<:D.

Proor. By inspection of the last subcapturing rule used to derive C <: D. All cases are immediate.
If the last rule was (sc-SET), we have our goal as premise. Otherwise, we have C = {x} and the goal
follows directly. O

LEMMA A.13 (SUBCAPTURING TRANSITIVITY). If I + C; <: Cy andT + C; <: Cs thenT + C; <:
Cs.

Proor. By induction on the first derivation.
Case (sc-eLem). C; = {x} and x € Cy, so by Lemma A.12T + {x} <: Cs.
Case (sc-vAR). Then C; = {x} andx : Cy Re T andT + Cy <: C,.ByIHT + C4 <: C3 and
we can conclude by (sc-vAR).
Case (sc-seT). By repeated IH and (sc-SET).

LEMMA A.14 (SUBCAPTURING REFLEXIVITY). If I' + C wf, thenT + C <: C.
Proor. By (sc-sET) and (SC-ELEM). O
LEMMA A.15 (SUBTYPING IMPLIES SUBCAPTURING). If I' + C; Ry <: C; Ry, thenT + C; <: Cy.

Proor. By induction on the subtyping derivation. If (capT), immediate. If (TRANS), by IH and
subcapturing transitivity Lemma A.13. If (RerL), then C; = C, and we can conclude by Lemma A.14.
Otherwise, C; = C, = {} and we can conclude by (Sc-SET). O

A.3.1 Subtyping inversion.
Fact A.16. Both subtyping and subcapturing are transitive.

ProoF. Subtyping is intrisically transitive through (TRANS), while subcapturing admits transitiv-
ity as per Lemma A.13. O

FacT A.17. Both subtyping and subcapturing are reflexive.

ProoF. Again, this is an intrinsic property of subtyping by (RerL) and an admissible property of
subcapturing per Lemma A.14. O

LEMMA A.18 (SUBTYPING INVERSION: TYPE VARIABLE). If I' + U <: C X, then U is of the form
C’ X' and we havel' + C’ <:CandT + X' <: X.

Proor. By induction on the subtyping derivation.

Case (TVAR), (REFL). Follow from reflexivity (A.17).
Case (capT). Then we have U =C’ SandT + C’ <: CandT + S <: X,

This relationship is equivalent to T + {} S <: {} X, on which we invoke the IH.

By IH we have {} S = {} Y and we can conclude with U = C’ Y.
Case (TRANS). Then we have I’ + U <: U and T + U <: C X. We proceed by using the IH
twice and conclude by transitivity (A.16).
Other rules are impossible.

O

LEMMA A.19 (SUBTYPING INVERSION: CAPTURING TYPE). If ' + U <: C S, then U is of the form
C' S’ suchthatT + C' <:CandT + S <:S.
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Proor. We take note of the fact that subtyping and subcapturing are both transitive (A.16) and
reflexive (A.17). The result follows from straightforward induction on the subtyping derivation. O

LEMMA A.20 (SUBTYPING INVERSION: FUNCTION TYPE). If T + U <: C V(x : Ty) T, then U either
is of the form C' X and we havel + C" <: CandT + X <:V(x : Ty) T, or U is of the form
C'V(x:U;) Uy and we haveT + C' <:CandT + Ty <: Uy andT,x : Ty + Uy <: Tp.

Proor. By induction on the subtyping derivation.
Case (TVAR). Immediate.
Case (FUN), (ReFL). Follow from reflexivity (A.17).
Case (capT). Then we have ' + C’ <:CandT + S <:V(x:Ty) T>.
This relationship is equivalentto T’ + {} S <: {} V(x : T;) T, on which we invoke the TH.
By IH {} S might have two forms. If {} S = {} X, then we can conclude with U = C" X.
Otherwise we have {} S={} V(x: Uy) U andT + Ty <: UyandI,x : Ty + U, <: T5.
Then, U = C’ V(x : Uy) U, lets us conclude.
Case (TRANS). Then we have T’ + U <: U’ andT + U <: CV(x : T}) T,. By IH U may have
one of two forms. If U = C” X, we proceed with Lemma A.18 and conclude by transitivity
(A.16).
Otherwise U = C’ V(x : Uy) U, and we use the IH againonT + U’ <: C' V(x : Up) Us. If
U = C” X, we again can conclude by (A.16). Otherwise if U = C”” V(x : U;) Uz, the IH only
givesus I, x : Uy + U, <: U,, which we need to narrow to I, x : T; before we can similarly
conclude by transitivity (A.16).
Other rules are not possible.
O

LEMMA A.21 (SUBTYPING INVERSION: TYPE FUNCTION TYPE). If ' + U <: CV[X <: T;] Ty, then
U either is of the form C' X and we haveT + C’ <: C andT + X <:V[X <: 1] Tp, or U is of the
form C' V[X <: Up] U; and we havel + C’' <:CandT + Ty <: Uy andT, X <) + Uy <: T.

Proor. Analogous to the proof of Lemma A.20. O

LEMMA A.22 (SUBTYPING INVERSION: BOXED TYPE). If I' v U <: C O T, then U either is of the
form C" X and we havel + C’ <: CandT + X <: 0T, orU is of the form C' O U’ and we have
' C <:Candl' + U’ <: T.

Proor. Analogous to the proof of Lemma A.20. O
A.3.2  Permutation, weakening, narrowing.

LEMMA A.23 (PERMUTATION). Permutating the bindings in the environment up to preserving
environment well-formedness also preserves type well-formedness, subcapturing, subtyping and typing.

Let T and A be the original and permutated context, respectively. Then:

(1) If T + T wf, then A + T wf.

(2) lfr F Cl <: Cz, then A + C1 <: Cg,

B3)IfT v U<:T,thenA + U <:T.

(4 IfT +t:T,thenAF t:T.

ProoF. As usual, order of the bindings in the environment is not used in any rule. O

LEMMA A.24 (WEAKENING). Adding a binding to the environment such that the resulting environ-
ment is well-formed preserves type well-formedness, subcapturing, subtyping and typing.
Let T and A be the original and extended context, respectively. Then:
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(1) IfT + T wf, then A + T wf.
(2)IfF F C; <:Cy, then A + C; <: Cy.
B)ITrU<:T,thenA + U <:T.
(4 IfT v t:T,thenAF t:T.

ProoF. As usual, the rules only check if a variable is bound in the environment and all versions
of the lemma are provable by straightforward induction. For rules which extend the environment,
such as (aBs), we need permutation. All cases are analogous, so we will illustrate only one.

Case (aBs). WLOG we assume that A =T, x : T. We know that T + A(y : U)t' : V(y : U) U.
and from the premise of (aBs) we also know that I,y : U + ¢’ : U.

ByIH,wehave [,y : U,x : T + t' : U.T,x : T,y : U is still a well-formed environment
(as T cannot mention y) and by permutation we have I',x : T,y : U + t’ : U. Then by (aABs)
wehave I,x : T + A(y : U)t’ : V(y : U) U, which concludes.

O

LEMMA A.25 (TYPE BINDING NARROWING).

(DIT+F S <:Sandl, X <:S,A + T wf, thenT, X <: S, A + T wf.

@) IfT S <:SandT, X <:S,A + C; <:Cy, thenT, X <: S, A + Cy <: C,.
B ITrrS <:Sandl, X <:S,AF Ty <, thenT,X <: S, A+ Th <t T.
4 IfT+ S <:SandT, X <:S,A v t:T,thenT, X <:S, A+ t:T.

Proor. By straightforward induction on the derivations. Only subtyping considers types to
which type variables are bound, and the only rule to do so is (TVAR), which we prove below. All
other cases follow from IH or other narrowing lemmas.

Case (TVAR). We need to prove I, X <: §', A + X <: S, which follows from weakening the
lemma premise and using (TRANS) together with (TVAR).
O

LEMMA A.26 (TERM BINDING NARROWING).

D) IT rFU <:UandT,x:U,A + T wf, thenT,x : U, A + T wf.

@) IfT + U <:UandT,x : U,A + C; <: Cy, thenT,x : U',A + C; <: Cy.
(3)IfT + U’ <:U andT,x:U,A + T, <: Ty, thenT,x : U, A v T; <: Ty.
4 IfTrvrU <Uandl,x :UAF t:T,thenT,x: U A Ft:T.

ProoF. By straightforward induction on the derivations. Only subcapturing and typing consider
types to which term variables are bound. Only (sc-vaRr) and (vAR) do so, which we prove below. All
other cases follow from IH or other narrowing lemmas.

Case (VAR). We know that U = C RandI,x : CRA + x: {x} R AsT + U’ <: U,
from Lemma A.19 we know that U’ = C’ R’ and that I' + R’ <: R. We need to prove
that,x : ¢’ R, A + x: {x} R. We can do so through (VAR), (sUB), (CAPT), (SC-ELEM) and
weakening I' + R’ <: R.

Case (sc-vAr). Then we know that C; = {y} and thaty : T € I, x : U,Aand that ', x : U, A +
CV(T) <: Cy.

If y # x, we can conclude by IH and (sc-vAR).

Otherwise, we have T = U. From Lemma A.19 we know thatT' + ¢cv(U’) <: cv(U), and
from IH we know that I', x : U’, A + cv(U) <: C,. By (sc-vaR) to conclude it is enough to
haveT',x : U’,A + cv(U’) <: Cy, which we do have by connecting two previous conclusions
by weakening and Lemma A.13.

O
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A4 Substitution
A.4.1  Term Substitution. We will make use of the following fact:

Fact A27. If x: T €T and+ T wf, thenT = Ay, x : T, Ay and Ay + T wf and sox ¢ tv(T).

LEMMA A.28 (TERM SUBSTITUTION PRESERVES SUBCAPTURING). If Ix : P,A + C; <: C; and
T + D <:co(P), thenT, [x := D]A + [x:=D]C; <: [x := D]C,.

Proo¥. Define § £ [x := D]. By induction on the subcapturing derivation.
Case (sc-ELeM). Then C; = {y} and y € C,. Inspect if y = x. If no, then our goal is T, OA +
{y} <: 6C;. In this case, y € 0C,, which lets us conclude by (sc-ELEm). Otherwise, we have
0C, = (C; \ {x}) UD, as x € C;. Then our goalisT, A + D <: (C; \ {x}) U D, which can
be shown by (sc-sET) and (SC-ELEM).
Case (sc-vAR). Then C; = {y} andy: C3S € I,x : P,Aand I, x : P,A + C;5 <: C,.

Inspect if y = x. If yes, then our goal is I', A + D <: C,. By IH we know that I', 0A +
0C; <: 0C,. As x = y, we have P = C3 S and therefore based on an initial premise of the
lemma we have I' + D <: Cs. Then by weakening and IH, we know that ', A + 6D <: 0Cs,
which means we can conclude by Lemma A.13.

Otherwise, x # y, and our goal is T, A + C; <: 8C,. We inspect where y is bound.

Case y € dom(T'). Then note that y ¢ Cs by Fact A.27. By IH we have I, 0A + 0C; <:

0C,. We can conclude by (sc-var) as [x := D]C3 =Cs andy : C3 P € T, OA.

Casey € dom(A). Then y : 0(C5 P) € I, OA and we can conclude by IH and (sc-vAR).
Case (sc-seT). Then C; = {y1, ..., y,} and we inspect if x € C;.

If not, then for all y € C; we have 8{y} = {y} and so we can conclude by repeated IH on
our premises and (SC-SET).

If yes, then we know that: Vy € C;.T,x : P,A + {y} <: C. We need to show that T, 0A +
0C; <: 0C,. By (sc-SET), it is enough to show that if y’ € 0Cy, then T, 0A + {y’} <: 6C,. For
each such v/, there exists y € C; such that y’ € 8{y}. For this y, from a premise of (sc-seT)
we know that T, x : P,A + {y} <: 0C; and so by IH we have T, 0A + 0{y} <: 6C,. Based on
that, by Lemma A.13 we also have I, 0A + {y’} <: 0C,. which is our goal.

O

LEmMMA A.29 (TERM SUBSTITUTION PRESERVES SUBTYPING). If I'x : P,A + U <: T andT + y: P,
thenT, [x :=y]A + [x =y]U <: [x :=y]T.

PROOF. Define § £ [x := y]. Proceed by induction on the subtyping derivation.
Case (ReFL), (TOP). By same rule.
Case (caprt). By IH and Lemma A.31 and (cApT).
Case (TRANS), (BOXED), (FUN), (TFUN). By IH and re-application of the same rule.
Case (TVAR). ThenU =Y andT=Sand Y <: S € I, x : U, A and our goal is ', 0A + 0Y <:
0(S). Note that x # Y and inspect where Y is bound. If Y € dom(T), we have Y <: S € T, A
and since x ¢ fv(S) (Fact A.27), 0(S) = S. Then, we can conclude by (TVAR). Otherwise if
Y € dom(A), we have Y <: S € T, 0A and again we can conclude by (TVAR).
[m]

LEMMA A.30 (TERM SUBSTITUTION PRESERVES TYPING). If I,x : P,A + t: T andT + x’ : P, then
I [x=x"]A v [x:=x"]t: [x:=x"]T.

PROOF. Define § £ [x := x’]. Proceed by induction on the typing derivation.
Case (vAR). Thent =yandy : CS € I',x : PbAand T = {y} S and our goal is,0A + y :

0({y} 9).
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Ify =x,then P =CSand 0({x}S) = {x'}S. Our goal is T, OA + x’ : {x'} S and we can
conclude by (VAR).

Otherwise, y # x and we inspect where y is bound.

If y € dom(T), then x ¢ fv(CS) and so 0({z} S) = {z} S and we can conclude by (VAR).
Otherwise, y € dom(A), soy : (CS) € T, A and we can conclude by (VAR).

Case (suB). By IH, Lemma A.29 and (SUB).
Case (ABS). Thent =A(y: Q). t'," T=co(t)V(y: Q) T" and I, x : P,A,y: Q + t' : T".

By IH, we have that ', 0A,y : 6Q + 6t : 0T’. We note that cv(0t) = 6 cv(2), which lets
us conclude by (aBs).
Case (TABS). Similar to previous rule.
Case (app). Thent = z1z; and I,x : PA + z; : CVY(y: Q) T"and I, x : P,A + z; : Q and
T = [y :=z,]T".

By IH we have I', 0A + 0z : 0(CV(y: Q) T’) and I, OA + 0z, : 6Q.

Then by (app) we have T, 0A + 0(z;1z) : [y := 02,]0T".

Asy # x and y # x’, we have [y := 02;]0T" = 0([y := 22]T’), which concludes.
Case (TApp). Similar to previous rule.
Case (Box). Thent =0OzandI,x: P, A+ z:CSand T=0CS.
By IH, we have I', 0A + 0z : 0C0S.If x ¢ C, we have 6C = C and C € dom(T, 8A) which
lets us conclude by (Box). Otherwise, 6C = (C\ {x}) U{y} AsT + y: U, 6C C dom(T, 6A),
which again lets us conclude by (Box).
Case (UNBOx). Analogous to the previous rule. Note that we just swap the types in the
premise and the conclusion.
Case (LeT). Thent = lety =sint’ andT,x : LA + s: QandI,x: P,A,y: Q + t' : T. By
the IH, we have I, 0A + 0s : Q and T, 0A,y : 6Q + 6t' : OT.

Then by (LET) we also have I, 0A + 6(lety = sint’) : T, which concludes. O

A.4.2 Type Substitution.

LEMMA A.31 (TYPE SUBSTITUTION PRESERVES SUBCAPTURING). If I'X <: S,A + C <: D and
I' - R<:SthenT,[X =R]JA + C<:D.

PROOF. Define § £ [X := R]. Proceed by induction on the subcapturing derivation.
Case (sc-seT), (sc-ELEM). By IH and same rule.
Case (sc-vAr). Then C = {y},y : C'S’ € I, X <: S,A, y # X. Inspect where y is bound.
If y € dom(T'), we have y : C’' S’ € T, A. Otherwise, by definition of substition we have
y: C’' 0S8’ € T, 0A. In both cases we can conclude by (sc-vAR), since y is still bound to a type
whose capture set is C’.
O

LEMMA A.32 (TYPE SUBSTITUTION PRESERVES SUBTYPING). If I X <: S,A + U <: T andT + R <:
S,thenT,[X :=R]JA + [X :=R]U <: [X :=R]T.

ProoF. Define § £ [X := R]. Proceed by induction on the subtyping derivation.
Case (ReFL), (TOP). By same rule.
Case (caprt). By IH and Lemma A.31 and (cApT).
Case (TRANS), (BOXED), (FUN), (TFUN). By IH and re-application of the same rule.
Case (TvAR). Then U = Yand T = S and Y <: §’ € I, X <: S,A and our goal is I', X <:
S,A F 0Y <: 08" If Y = X, by lemma premise and weakening. Otherwise, inspect where Y
isbound. If Y € dom(T'), we have Y <: S’ € T, 0A and since X ¢ fv(S’) (Fact A.27), 0S5’ = S’.
Then, we can conclude by (TVAR). Otherwise if Y € dom(A), we have Y <: S’ € T, A and
we can conclude by (TVAR).
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]

LEMMA A.33 (TYPE SUBSTITUTION PRESERVES TYPING). If X <: S,A +F t:T andT + R <: S,
thenT,[X :=R]JA v [X :=R]t: [X :=R]T.

PROOF. Define § £ [X := R]. Proceed by induction on the typing derivation.
Case (vAR). Thent =y,y:CS €L X <: S,A,y # X, and our goal is T, A + y: {y} 6S".
Inspect where y is bound. If y € dom(T), theny : C S” € T, A and X ¢ fv(S’) (Fact A.27).
Then, (CS’) = CS’ and we can conclude by (VaRr). Otherwise, y : C0S’ € T, 0A and we can
directly conclude by (VAR).
Case (Bs), (TABs). In both rules, observe that type substitution does not affect cv and conclude
by IH and rule re-application.
Case (app). Then we have t =x yand ILX <: S,A + x: CV(z:U) i and T = [z := y]Ty.
We observe that 0[z := y|Ty = [z := y]0T, and 0t = t and conclude by IH and (app).
Case (tapp). Then we have t = x [$’] and I, X <: S,A + x: CV[Z <: S| Tyand T = [Z =
S T.
We observe that 0[Z := §'|Ty = [Z := 05"]0T,. By IH, I, 0A + x : CV[Z <: 6S’] Tp, Then,
we can conclude by (Tapp).
Case (Box). Thent = Oyand ILX <: SA +F y:CS and T = 0CS’, and our goal is
[LOA v+ y:00(CS’).
Inspect where y is bound. If y € dom(T’), theny : CS’ € I, 0A and X ¢ fv(S’) (Fact A.27)
. Then, 8(C’ §’) = C" S’ and we can conclude by (Box). Otherwise, y : C 8S’ € T, A and we
can directly conclude by (Box).
Case (UNBOx). Proceed analogously to the case for (Box) — we just swap the types in the
premise and in the consequence.
Case (suB). By IH and A.32.
Case (LeT). Thent = lety =sint’ andT,x : LA+ s: QandI,x: P,A,y: Q + t' : T. By
the IH, we have I, 0A + 0s : Q and T, 0A,y : 6Q + 6t' : OT.
Then by (LET) we also have I', 0A + 6(lety = sint’) : T, which concludes. O

A.5 Main Theorems - Soundness

A.5.1 Preliminaries. As we state Preservation (Theorem A.43) in a non-empty environment, we
need to show canonical forms lemmas in such an environment as well. To do so, we need to know
that values cannot be typed with a type that is a type variable, which normally follows from the
environment being empty. Instead, we show the following lemma:

LEMMA A.34 (VALUE TYPING). If ' + 0 : T, then T is not of the form C X.

Proor. By induction on the typing derivation.

For rule (suB), we know that ' + 0 : Uand T + U <: T. Assuming T = C X, we have a
contradiction by Lemma A.18 and IH.

Rules (BOX), (aBS), (TABS) are immediate, and other rules are not possible. O

LEMMA A.35 (CANONICAL FORMS: TERM ABSTRACTION). If T + v : CV(x : U) T, then we have
v=Ax:U)tandT + U<:U andT,x :U v t:T.

Proor. By induction on the typing derivation.

For rule (suB), we observe that by Lemma A.20 and by Lemma A.34, the subtype is of the form
C'V(y:U"”) T’ and we have T + U <: U”. By IH we know that v = A(x : U’)t and T + U” <: U’
andI,x : U” + t: T.By (TRaNS) we have I' + U <: U’ and by narrowing we have I',x : U + ¢ : T,
which concludes.
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Rule (aBs) is immediate, and other rules cannot occur. m]

LEMMA A.36 (CANONICAL FORMS: TYPE ABSTRACTION). If I + v : CV[X <: U] T, then we have
v=AX<:U]tandT + U <:U" andT, X <:U + t:T.

ProoF. Analogous to the proof of Lemma A.35. O
LEMMA A.37 (CANONICAL FORMS: BOXED TERM). If ' + v: COT, thenv=0x andT + x: T.
Proor. Analogous to the proof of Lemma A.35. O

LEMMA A.38 (VARIABLE TYPING INVERSION). If T + x:C S, thenx :C’ S’ €T andT + §' <: S
for some C’, S’

Proor. By induction on the typing derivation.
Case (suB). ThenT' F x : C”" §” and T+ C” §” <: C S. By theIHwe haveI' - x : C" §’ and
'+ S <:S”. Then by Lemma A.19 we have I' + §”” <: S, which lets us conclude by (TRANS).
Case (VAR). ThenT F x : C’ S and C = {x}. We can conclude with S" = S by (REFL). O

LEMMA A.39 (VARIABLE LOOKUP INVERSION). If we have bothT + o ~ A andx:CS €T, A, then
o(x) = v implies thatT,A + v:CS.

Proor. By structural induction on o. It is not possible for ¢ to be empty.

Otherwise, o = ¢’[ lety = vin[ ] ] and for some U we have both A = A’,y : Uand I, A" + v : U.

If y # x, we can proceed by IH as x can also be typed in T, A’, after which we can conclude by
weakening. Otherwise, U = C S and we can conclude by weakening. O

LEMMA A.40 (TERM ABSTRACTION LOOKUP INVERSION). If I' + o ~AandT,A + x:CV(z:U) T
ando(x) = A(z:U')t, thenT,A + U <: U’ andT,A,z:U + t:T.

Proor. A corollary of Lemma A.39 and Lemma A.35. O

LEMMA A.41 (TYPE ABSTRACTION LOOKUP INVERSION). If ' + 0 ~ AandT,A + x: CV[Z <:
UlT ando(x) = AlZ <:U’]t, thenT,A + U <: U’ andT,A,Z <:U + t:T.

PrOOF. A corollary of Lemma A.39 and Lemma A.36. O

LEMMA A.42 (Box LOOKUP INVERSION). If T + 0 ~Aando(x) =0y andT,A + x:0OT, then
TAFy:T.

Proor. A corollary of Lemma A.39 and Lemma A.37. O
A.5.2 Soundness. In this section, we show the classical soundness theorems.

THEOREM A.43 (PRESERVATION). If we havel + 0 ~ A andT,A + t:T,theno[t] — o[t ]
implies thatT,A v t' : T.

Proor. We proceed by inspecting the rule used to reduce of ¢ |.
Case (apprY). Then we have t = e[ xy ] and o(x) = A(z: U)sand t' =¢[ [z :=y]s ].

By Lemma A.4, for some Q we haveI'A +e: Q = TandI',A + xy : Q. The typing
derivation of x y must start with an arbitrary number of (suB) rules, followed by (app). We
proceed by induction on the number of (SuB) rules. In both base and inductive cases we can
only assume that I', A + x y : Q’ for some Q’ such that I, A + Q" <: Q.

In the inductive case, I, A + x y : Q’ is derived by (suB), so we also have some Q" such
that T,AF xy : Q” and A + Q" <: Q’. We have I', A + Q" <: Q by (TRANS), so we can
conclude by using the inductive hypothesison T, A + xy : Q”.
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In the base case, I', A + xy : Q' is derived by (app), so for some Q" we have I', A + x :
V(z:U') Q" and T, A+ y: U’ and Q" = [z := y]Q”. By Lemma A.40 and narrowing, we
have I, A,z : U’ + s : Q”. By Lemma A.30, we have I, A + [z :=y]s : [z := y]Q”, and since
Q' =[z=y]Q”,by (suB) we have [, A} [z :=y]s : Q.

To conclude that ¢’ = e[ [z := y]s | can be typed as T, we use Lemma A.6.

Case (TAPPLY), (OPEN). As above.
Case (RENAME). Then we have t = e[ letx =yins ] and t' = e[ [x :=y]s ].

Again, by Lemma A.4 for some Q we have A+ e: Q= TandIAF letx =yins: Q.

We again proceed by induction on number of (suB) rules at the start of the typing
derivation for let x = y in s, again only assuming that we can type the plug as some Q’ such
that Q" <: Q. The inductive case proceeds exactly as before.

In the base case, (LET) was used to derive that I, A + letx = yins : Q’. The premises
are VA Fy:UandLAx : U+ s : Q' and x ¢ fv(Q’). By Lemma A.30, we have
[LA F [x:=y]s: [x:=y]Q' Because x ¢ fv(Q’), [x := y]Q’ = Q’, which means that we
can again conclude by (su) and Lemma A.6.

Case (LIFT). Then we have t = e[ letx =vins ] and t’ = letx =vine[s].

Again, by Lemma A.4 for some Q wehave A+ e: Q= TandI,AF letx =yins: Q.

We again proceed by induction on number of (suB) rules at the start of the typing
derivation for letx = v in s, again only assuming that we can type the plug as some Q’ such
that Q" <: Q. The inductive case proceeds exactly as before.

In the base case, (LET) was used to derive that I, A + letx = vins : Q'. The premises are
LLAro:UandT,A,x: U+t s:Q and x ¢ fv(Q’).

By weakening of typing, we also have I',A,x : U + e : Q = T. Then by (suB) and
Lemma A.6 we have I, A, x : U+ e[ s ] : T. Since I', A + T wf, by Barendregt x ¢ fv(T), so
by (LET) we have T, A + letx = vine[ s | : T, which concludes.

[m]

Definition A.44 (Canonical store-plug split). We say that a term of the form o[ ¢ | is a canonical
split (of the entire term into store context o and the plug t) if ¢ is not of the form letx = vint’.

FacT A.45. Every term has a unique canonical store-plug split, and finding it is decidable.

LEMMA A.46 (EXTRACTION OF BOUND VALUE). If I, A + x : T and + o ~ A and x € dom(A),
then o(x) = 0.

Proor. By structural induction on A. If A is empty, we have a contradiction. Otherwise, A =
N,z:T' ando =c¢'[letz=vin[] J]andT,A’,z: T’ + v : T'. Note that A is the environment
matching ¢ and can only contain term bindings. If z = x, we can conclude immediately, and
otherwise if z # x, we can conclude by IH. m|

THEOREM A.47 (PROGRESS). If + ol e[t]]:T ando[ e[ t]] is a canonical store-plug split, then
eithere[ t | = a, or there exists o[ t' | such thato[e[t]] — o[ t'].

Proor. Since o e[ ¢ | | is well-typed in the empty environment, there clearly must be some
Asuchthat - 0 ~Aand A + e[ t ] : T. By Lemma A.4, we have that A + t : P for some P. We
proceed by induction on the derivation of this derivation.

Case (vAR). Then t = x.
If e is non-empty, e[ x | = ¢’[ lety = xint | and we can step by (RENAME); otherwise,
immediate.
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Case (ABS), (TABs), (Box). Then t = v.

If e is non-empty, e[ v | = €’[ letx = vint | and we can step by (LIFT); otherwise,
immediate.
Case (app). Thent =xyand A + x : CV(z:U) and A + y: U.

By Lemmas A.46 and A.35, o(x) = A(z : U’)t’, which means we can step by (APPLY).
Case (tapp). Then t = x [S] and A + x : CV[Z <: S] Tp.

By Lemmas A.46 and A.36, o(x) = A [z <: §’]. t/, which means we can step by (TAPPLY).
Case (UNBox). Thent =C o— xand A + x: COCS.

By Lemmas A.46 and A.37, o(x) = O y, which means we can step by (OPEN).
Case (LET). Then t = letx = sint’ and we proceed by IH on s, with e[ letx =[] int’ ] as
the evaluation context.
Case (suB). By IH.

A.5.3 Consequences.

LEMMA A.48 (CAPTURE PREDICTION FOR ANSWERS). If T + o[ a] : C S, thenT + o[ a] :
cv(o[a])SandT + cv(o[a]) <:C.

Proor. By induction on the typing derivation.

Case (suB). ThenT + a:C’ §andT + C' S’ <:CS.ByIH,T + o[ a]:cv(c[a]) S and
I+ cv(o[a]) <: C'. By Lemma A.19, we have thatT + ¢’ <:CandT + §’ <:S.

To conclude we need T' + o[ a] :cv(c[a]) SandT + cv(o[ a]) <: C, which we
respectively have by subsumption and Lemma A.13.
Case (VAR), (ABs), (TABs), (Box). Then o is empty and C = cv(a). One goal is immediate, other
follows from Lemma A.14.
Case (LET). Then o =letx =vino’ and,x: U + ¢’[a]:CSandx ¢ C.

ByIH,T,x:U + o'[a] <:cv(o’[a]) SandT,x: U + cv(o'[ a]) <: C.

By Lemma A.28, we have I' + [x := cv(v)](cv(o'[ a])) <: [x := cv(v)]C.

By definition, [x := cv(v)](cv(c’[ a ])) = cv(letx = vind’[ a ]), and we also already
know that x ¢ C.

This lets us conclude, as we have I’ + cv(letx =vino’'[a]) <: C.
Other rules cannot occur.

[m]
LEMMA A.49 (CAPTURE PREDICTION FOR TERMS). Let + o ~AandA + t:CS.
Thene[t] —" e[ o'[ a]] implies that A + cv(c’'[ a]) <: C.
Proor. By preservation, + ¢’[ a ] : C S, which lets us conclude by Lemma A.48. O

A.6 Correctness of boxing

A.6.1 Relating cv and stores. We want to relate the cv of a term of the form o[ ¢ ] with cv(#) such
that, for some definition of ‘resolve’, we have:

cv(o[ t]) = resolve(o, cv(t))

Let us consider term of the form o[ ¢ ] and a store o of the form let x = v in ¢’. There are two rules
that could be used to calculate cv(letx = vin o’):

cv(letx =vint) = cv(t) if x ¢ cv(t)
cv(letx =sint) =cv(s) Ucv(t)\x
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Observe that since we know that x is bound to a value, we can reformulate these rules as:
cv(letx =vint) = [x := cv(v)] cv(t)

Which means that we should be able to define ‘resolve’ with a substitution. We will call this
substitition a store resolver, and we define it as:

resolver(letx = vin o) = [x := cv(v)] o resolver(o)
resolver([]) = id
Importantly, note that we use composition of substitutions. We have:
resolver(letx = ainlety = xin[]) = [x := {a}, y := {a}]
With the above, we define resolve as:
resolve(o, C) = resolver(o)(C)
This definition satisfies our original desired equality with cv:

Fact A.50. For all terms t of the form o[ s |, we have cv(t) = resolve(o, cv(s))

A.6.2 Relating cv and evaluation contexts. We now relate cv to evaluation contexts e. First, note
that by definition of cv we have:

Fact A.51. For all termst of the form letx = sint’ such that s is not a value, we have cv(t) =
co(s) Ucv(t') \ x.

Accordingly, we extend cv to evaluation contexts (cv(e)) as follows:
cv(letx =eint) =cv(e) Ucv(t) \ x
ev([D={}
We then have:
Fact A.52. Foralltermst of the forme[ s | such thats is not a value, we have cv(t) = cv(e)Ucv(s).

A.6.3 Relating cv to store and evaluation context simultaneously. Given our definition of ‘resolve’
and cv(e), we have:

Fact A53. Leto[ e[ t ] ] be a term such that t is not a value. Then:
cv(o[ e[ t]]) =resolve(o, cv(e) Ucv(t))
The proof proceeds by induction on ¢ and e, using Facts A.50 and A.52.
A.6.4  Correctness of cv.

Definition A.54 (Platform environment).
T is a platform environment if for all x € dom(T') we have x : {} S € T for some S.

LEMMA A.55 (INVERSION OF SUBCAPTURING UNDER PLATFORM ENVIRONMENT).
If T is a platform environment and T + C <: D, then either C C D or € D.

Proor. By induction on the subcapturing relation. Case (sc-ELEM) trivially holds. Case (sc-SET)
holds by repeated IH. In case (sc-VAR), we have C = {x} and x : C’ S € T. Since T is a platform
environment, we have C’ = {*}, which means that the other premise of (sc-var) isT' - {*} <: D.
Since T is well-formed, * ¢ dom(T'), which means that we must have * € D. O

LEMMA A.56 (STRENGTHENING OF SUBCAPTURING). If I,V + C <: D and C C dom(T'), then we
must havel + C <: D.
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Proor. First, we consider that if « € D, we trivially have the desired goal. If * ¢ D, we proceed
by induction on the subcapturing relation. Case (sc-ELEM) trivially holds and case (sc-seT) holds by
repeated IH.

In case (sc-var), we have C = {x}, x : C’S € I,I”. This implies that T’ = I},x : C'S, I} (as
x ¢ dom(T)). Since I, T’ is well-formed, we must have I + C’ wf. Since we already know * ¢ D,
then we must also have * ¢ C’, which then leads to C’ C dom(I'). This in turn means that by IH
and weakening we have I' + C’ <: D, and since we also have x : C’ S € T', we can conclude by
(sc-vAR). o

Then we will need to connect it to subcapturing, because the keys used to open boxes are
supercaptures of the capability inside the box. We want:

LEmmA A.57. LetT be a platform environment,T + ¢ ~ A andT', A + C; <: C,. Thenresolve(o,C;) C
resolve(a, Cy).

Proor. By induction on o. If ¢ is empty, we have resolve(o, C;) = Cy, likewise for C;, and we
can conclude by Lemma A.55.

Otherwise, 0 = ¢/[ letx = vin[] ] and A = A’,x : D, Sy for some S,. Let 8 = resolver(o).
We proceed by induction on the subcapturing derivation. Case (sc-ELEM) trivially holds and case
(sc-sET) holds by repeated TH.

In case (sc-vaAr), we have C; = {y} andy : D, S, € I',A for some S, and I', A + D, <: C,.
We must have I', A’ + D, wf and so we can strengthen subcapturing to I', A’ + D, <: C;, which
by IH gives us resolver(o’)(D,) C resolver(c’)(C;). By definition we have 0 = resolver(c) =
resolver(o”) o [x := cv(v)]. Since by well-formedness x ¢ D, we now have:

6D, C 6C,

By Lemma A.39 and Lemma A.48, we must have I', A + cv(v) <: Dy. Since I, A + cv(v) wf,
we can strengthen this to I, A + cv(v) <: Dy. By outer IH this gives us resolver(c’)(cv(v)) <
resolver(o”)(Dy). Since x ¢ cv(v) U Dy, we have:

Ocv(v) C 0D,
Which means we have 0 cv(v) € 6C, and we can conclude by 0 cv(v) = 6{x}, since:
0{x} = (resolver(c’) o [x := cv(v)])({x}) = resolver(c’)(cv(v))

0 cv(v) = resolver(c’)(cv(v)) (since x ¢ cv(v))

A.6.5 Core lemmas.

LEMMA A.58 (PROGRAM AUTHORITY PRESERVATION). Let V[ ¢ | be a well-typed program such that
Y[t] — Y[t ]. Thencv(t’) C cv(t).

Proor. By inspection of the reduction rule used.
Case (appPrY). Thent = o[ e[ xy ] | and t' = o[ e[ [z := y]s | ]. Note that our goal is then:
resolver(o)(cv(e) Ucv([z :=y]s)) < resolver(o)(cv(e) Ucv(xy))

If we have x € dom(¥), then ¥(x) = A(z : U) s. By definition of platform, the lambda is
closed and we have fv(s) C {z}, which in turn means that cv([z := y]s) € {y} C cv(xy).
This satisfies our goal.

Otherwise, we have x € dom(o) and o(x) = A(z : U) s. Since x is bound in o, we have
resolver(o)(cv(A(z : U)s) U {y}) C resolver(o)(cv(xy))). Since cv([z = y]s) C cv(A(z :
U) s) U {y}, our goal is again satisfied.
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Case (TAPPLY). Analogous reasoning.

Case (OPEN). Thent = o[ e[ C o— x ] ] and ' = o[ e[ z ] ]. We must have x € dom(o) and
o(x) = O z, since all values bound in a platform must be closed and a box form cannot be
closed. Since ¥[ t | is a well-typed program, there must exist some I', A such that T is a
platform environment and + ¥[ o | ~ T, A.

If z € dom(o), then by Lemma A.39 and Lemma A.42 we have I, A + z : C S, for some S,.
By straightforward induction on the typing derivation, we then must have I', A + {z} <: C.
Then by Lemma A.57 we have resolver(o)({z}) C resolver(c)(C), which lets us conclude
by an argument similar to the (aAppLY) case.

Otherwise, z € dom(¥). Here we also have T', A + {z} <: C, which implies we must have
z € C, so we have cv(z) C cv(C o— x) and can conclude by a similar argument as in the
(aPPrLY) case.

Case (RENAME), (LIFT). The lemma is clearly true since these rules only shift subterms of ¢ to
create t’.
O

LEMMA A.59 (SINGLE-STEP PROGRAM TRACE PREDICTION). Let W[ t | be a well-typed program such
that Y[ t | — Y[ t’ |. Then the primitive capabilities used during this reduction are a subset of cv(t).

Proor. By inspection of the reduction rule used.

Case (appry). Thent = o[ e[ xy | ]. If x € dom(0), the lemma vacuously holds. Otherwise,
x € dom(¥) \ dom(o). From the definition of cv, we have {x} \ dom(o) C cv(#). Since x is
bound in ¥, we then have x € cv(t), which concludes.
Case (TAPPLY). Analogous reasoning.
Case (OPEN), (RENAME), (LIFT). Hold vacuously, since no capabilities are used by reducing
using these rules.

[m]

LEMMA A.60 (PROGRAM TRACE PREDICTION). Let ¥[ t | be a well-typed program such that
Y[ t] —* Y[t ]. Then the primitive capabilities used during this reduction are a subset of cv(t).

Proor. By IH, Single-step program trace prediction and authority preservation. O

A.7 Avoidance

Here, we restate Lemma 3.3 and prove it.

LEMMA A.61. Consider a termletx = sint in an environment T such thatE + s : Cs U is the most
specific typing fors inT andT',x : Cs U + t : T is the most specific typing fort in the context of the
body of the let, namely T',x : Cs U. Let T be constructed from T by replacing x with Cs in covariant
capture set positions and by replacing x with the empty set in contravariant capture set positions. Then
for every type V avoiding x such thatT,x: C; S + T<:V, I + T’ <: V.

Proor. We will construct a subtyping derivation showing that T’ <: V. Proceed by structural
induction on the subtyping derivation for T <: V. Since T” has the same structure as T, most of the
subtyping derivation carries over directly except for the subcapturing constraints in (CAPT).

In this case, in covariant positions, whenever we have Cr <: Cy for a capture set Cr from T
and a capture set Cy from V, we need to show that that + [x := Cs]Cr <: Cy. Conversely, in
contravariant positions, whenever we have Cy <: Cr, we need to show that Cy <: [x := {}]Cr. For
the covariant case, since x € Cr but not in Cy, by inverting the subcapturing relation Cr <: Cy, we
obtain Cs <: Cy. Hence [x := C]Cr <: Cy, as desired.
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The more difficult case is the contravariant case, when we have Cy <: Cr. Here, however, we

have that Cy <: [x := {}]Cr by structural induction on the subcapturing derivation as x never

occurs on the left hand side of the subcapturing relation as V avoids x. O
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